
1 of 24System Dynamics Review, 2025; 41:e1798
https://doi.org/10.1002/sdr.1798

System Dynamics Review

MAIN ARTICLE OPEN ACCESS

Incorporating Deep Learning Into System Dynamics:
Amortized Bayesian Inference for Scalable Likelihood-Free
Parameter Estimation
Hazhir Rahmandad1   | Ali Akhavan2   | Mohammad S. Jalali2

1Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA  |  2MGH Institute for Technology Assessment,
Harvard Medical School, Boston, Massachusetts, USA

Correspondence: Hazhir Rahmandad (hazhir@mit.edu)

Received: 15 October 2024  |  Revised: 6 December 2024  |  Accepted: 27 December 2024

Funding: This work was supported in part by the U.S. National Science Foundation, Division of Mathematical Sciences and Division of Social and
Economic Sciences (Award No. 2229819).

Keywords: amortized Bayesian inference | machine learning | neural networks | neural posterior estimation | parameter estimation | uncertainty
quantification

ABSTRACT
Estimating parameters and their credible intervals for complex system dynamics models is challenging but critical to continu-
ous model improvement and reliable communication with an increasing fraction of audiences. The purpose of this study is to
integrate Amortized Bayesian Inference (ABI) methods with system dynamics. Utilizing Neural Posterior Estimation (NPE), we
train neural networks using synthetic data (pairs of ground truth parameters and outcome time series) to estimate parameters of
system dynamics models. We apply this method to two example models: a simple Random Walk model and a moderately complex
SEIRb model. We show that the trained neural networks can output the posterior for parameters instantly given new unseen
time series data. Our analysis highlights the potential of ABI to facilitate a principled, scalable, and likelihood-free inference
workflow that enhance the integration of models of complex systems with data. Accompanying code streamlines application to
diverse system dynamics models.

1   |   Introduction

System dynamics modeling draws on various data sources, in-
cluding qualitative, archival, and numerical (Forrester 1987) to
build models of important problems. Without empirical support,
theoretical claims or policy recommendations can be misguided
(Sterman 2018). A continuous conversation between models and
data helps develop better theory and policy (Popper 1934; Box,
Hunter, and Hunter 1978; Homer 1996) and ensures models'
relevance.

For example, Rahmandad and colleagues developed system
dynamics models to understand heterogeneity in COVID-19
deaths, predict future trajectories, and assess vaccine bene-
fits (Rahmandad, Lim, and Sterman 2021; Rahmandad and
Sterman 2022; Rahmandad, Xu, and Ghaffarzadegan 2022a).
The model(s) went through over 80 versions. Each iteration com-
pared model outputs with empirical data (deaths, cases, hospi-
talizations, excess mortality) and estimated parameters against
the literature (e.g., vaccine effectiveness, immunity loss time,
and infection fatality rates). Discrepancies motivated searches

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the

original work is properly cited and is not used for commercial purposes.

© 2025 The Author(s). System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.

Accepted by Andreas Größler

https://doi.org/10.1002/sdr.1798
https://doi.org/10.1002/sdr.1798
mailto:
https://orcid.org/0000-0002-2784-9042
https://orcid.org/0000-0002-7077-3442
https://orcid.org/0000-0001-6769-2732
mailto:hazhir@mit.edu
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsdr.1798&domain=pdf&date_stamp=2025-01-21

2 of 24 System Dynamics Review, 2025

for underlying causes and mechanisms, which then informed
model updates from behavioral response feedback and exploring
adherence fatigue to loss of immunity, vaccination dynamics,
separation of populations based on prior immunity status, and
many others. Absent this iterative process, earlier models would
have produced different, likely inferior, and even misleading
conclusions and recommendations. Therefore, iterative refine-
ment of models is vital for ensuring the reliability and relevance
of model-driven insights in addressing real-world challenges.

Enhancing models iteratively involves three key elements: feed-
back to refine model structures, parameter identification, and
a signal to know when the model is good enough for the pur-
pose at hand. Historically, iterative modeling relied on compar-
ing models to qualitative and archival data (Forrester 1987).
While revealing structural shortcomings, these methods do not
assess parameter accuracy or overall model quality. Even with
numerical data, traditional methods focused on hand calibra-
tion of point estimates and simple statistical tests (Lyneis and
Pugh 1996; Sterman 2000). Automated calibration methods
have since emerged, simplifying the search for optimal param-
eters (Oliva 2003).

Recent work aims not only to find point estimates but also to
quantify uncertainty in model parameters (Jalali, Rahmandad,
and Ghoddusi 2015; Andrade and Duggan 2021). Uncertainty
quantification is critical because it allows researchers to de-
termine if qualitative conclusions are statistically significant
(Gelman et al. 1995; Kennedy 2008). It is also essential for pro-
jecting future trajectories and designing policies (Manski 2013),
for example, the decision to purchase insurance is typically based
on low probabilities of adverse events in the tail of outcomes
distributions, not the most likely scenarios. Thus, quantifying
uncertainty not only enhances model reliability and theoretical
conclusions but also supports better decision-making.

The explosion in the availability of numerical data (Varian 2014;
Blei and Smyth 2017) has made formal parameter estimation and
uncertainty quantification widely feasible and expected across
many disciplines. Classical methods for uncertainty quantifica-
tion often rely on explicitly defining the ‘likelihood’ of some set
of model parameters given an observed dataset. When feasible,
these methods provide important advantages in simplicity, com-
putational costs, transparency, and efficiency (Gill 2002; Casella
and Berger 1990). The parameter combination that maximizes
the likelihood of generating the observed dataset becomes the
maximum likelihood estimate, and the curvature of the likeli-
hood function around the maximum likelihood point informs
uncertainty in estimates. Whether that curvature is approxi-
mated using the Hessian matrix (of likelihood with respect to
model parameters) or empirically sampled using Markov Chain
Monte Carlo (MCMC) and related methods, one can quan-
tify uncertainty in parameters when likelihoods are available
(Gelman et al. 1995).

Unfortunately, likelihoods are not available for most system
dynamics models due to nonlinearity, process noise, and high-
dimensional parameter spaces. Absent likelihoods, some may
opt for simplifying the model to enable explicit likelihood cal-
culations (Box and Jenkins 1976), trading off model quality
for tractability. Another approach is to use approximations

of the likelihood function that may be inaccurate but flexible
enough to quantify parameter uncertainty (Li, Rahmandad,
and Sterman 2022). Such approximations, when effective, are
appealing but should be designed and validated for each case.
A third approach is to use more complex state resetting and fil-
tering methods (e.g., Kalman or particle filter) to enable better
estimates of true likelihood, albeit at increased computational
costs (Arulampalam et al. 2002; Eberlein 2015).

However, methods exists that do not require likelihoods, in-
cluding simulation-based inference approaches, spanning
method of (simulated) moments, variational inference, ap-
proximate Bayesian calculation, and related approaches
(Hansen 1982; Marin et al. 2012; Jalali, Rahmandad, and
Ghoddusi 2015; Hosseinichimeh et al. 2016; Blei, Kucukelbir,
and McAuliffe 2017). These methods often (but not always, see
Drovandi and Frazier 2022) calculate some informative sum-
mary statistics of the data and search over model parameters for
values that offer summary statistics matching those in the data.
These methods do not usually have the efficiency of likelihood-
based methods (i.e., they lose information in the estimation
process and thus estimate wider credible intervals). Part of the
inefficiency is due to the ad-hoc nature of selecting the summary
statistics. These methods are also usually computationally less
efficient. These limitations add up, limiting many likelihood-
free methods to simpler models (e.g., a dozen unknown parame-
ters on models that simulate in a fraction of a second) and good
summary statistics can be specified manually (but see varia-
tional inference Blei, Kucukelbir, and McAuliffe 2017).1

In short, parameter estimation and uncertainty quantification
for system dynamics models are increasingly important and can
benefit from advances in other fields. A robust solution enables
the estimation of both the model parameters and their uncer-
tainty and validation of our estimation framework. Calibration
methods most common in system dynamics literature offer point
estimates for model parameters but fall short on other criteria
for a principled inference workflow. This paper offers a bridge
to rapid advances in estimation methods in neighboring fields
(Vehtari, Gelman, and Gabry 2017), including those building
on machine learning methods that leverage neural networks to
provide more comprehensive solutions to estimation problems.

In the next section, we provide a high-level overview of this
evolving methodological toolbox. We then apply one promising
method from this set to two simple system dynamics models
to assess its viability and promise. We demonstrate how a SD
model can generate the synthetic data needed to train neural
networks that enable Bayesian inference, and how new syn-
thetic datasets (i.e., data with known true parameter values) can
be used for validation of the inference process. Two case studies
demonstrate the practical implications and benefits of integrat-
ing machine learning techniques into system dynamics.

2   |   Neural Networks for Estimating Model
Parameters

Recent advances in machine learning methods leveraging
neural networks (NNs) are quickly changing the landscape
for parameter estimation methods (Raissi, Perdikaris, and

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

3 of 24

Karniadakis 2019; Cranmer, Brehmer, and Louppe 2020).
Recent work shows NNs can learn the posterior distribution
(i.e., the probability distribution of model parameters condi-
tioned on observed data) of parameters without requiring an
explicit likelihood function (Tran et al. 2019; Papamakarios
et al. 2021; Kingma and Welling 2022). These methods can over-
come challenges due to intractable likelihood functions and may
even reduce the computational costs associated with iterative
simulation and optimization processes traditionally required for
parameter estimation.

The details of implementing NNs vary depending on the
specific method used and are reviewed elsewhere (e.g.,
see Cranmer, Brehmer, and Louppe 2020; Papamakarios
et al. 2021). The core problem is seen as identifying the (poste-
rior) distribution of the (vectors of) model parameters (𝜃) given
an observed dataset (𝑥). Two of the most common categories
of these methods include Neural Ratio Estimation (NRE)
(Durkan et al. 2019; Hermans, Begy, and Louppe 2020) and
Neural Posterior Estimation (NPE) (Lueckmann et al. 2017;
Greenberg, Nonnenmacher, and Macke 2019) methods, while
other approaches (such as synthetic likelihood estimation) are
also available and rapidly evolving.

In NRE methods, a neural network receives combinations of 𝜃
and 𝑥 as input and is trained to tell apart if the 𝑥 has come from
the 𝜃 that generated it (correct matching of parameter and data)
or not (e.g., by scrambling which 𝜃 generated 𝑥, and showing
incorrect matches to NN). Thus, posterior estimation turns into

a classification problem in which NNs excel. Once the NN has
learned to make this classification, it has implicitly learned the
posterior: Given a data set 𝑥, what is the likelihood of different
parameter combinations having generated that dataset? With
this information embedded in the NN, one can rapidly sample
from the posterior using methods like MCMC without requir-
ing sampling from the (computationally expensive) simula-
tion model.

The NPE methods attempt to learn the full posterior distribu-
tion directly. A common approach is to train a reversible NN
(one where the NN's transformation function can be reversed
analytically, e.g., Normalizing Flows (Tabak and Turner 2013))
so that inputting both 𝑥 and 𝜃 (that generated 𝑥) into the NN,
the network (on its “forward” path) learns to output a simple
distribution (e.g., a standard multivariate Gaussian) of the same
dimensionality as 𝜃. This “training phase” process leverages the
inherent flexibility of neural networks to approximate complex,
non-linear mappings between inputs and outputs. In the infer-
ence phase, by inverting that network analytically and condi-
tioning it on an observed dataset 𝑥, one can give it samples of
standard multivariate Gaussian distribution and produce, at the
end of the “inverse” path, samples from the posterior of the pa-
rameter distribution consistent with the dataset 𝑥. The task of
training the network is pursued using an error function mini-
mizing the gap between the outputs of the forward network and
a standard multivariate Gaussian distribution, typically using
variants of Kullback-Leibler divergence between the two dis-
tributions. Figure 1 illustrates such a workflow. An important

FIGURE 1    |    Summary of the training and inference phases. During training samples of θ from prior distribution are fed into the system dynam-
ics model to generate synthetic (simulated) data. Each synthetic dataset is turned into a summary vector using a summary neural network h and
potentially augmented by hand-crafted summary statistics. The summary vector and original parameters are then fed into the inverse inference
network f and an optimizer estimates the weights of h and f so that the output of inverse inference network converges to a simple base distribution
(e.g., multi-variate Gaussian with dimensionality of θ). In the inference phase, an unseen (e.g., real-world) dataset is used to generate the summary
vector leveraging estimated h. The inference network then uses the summary vector and samples from the base distribution to generate the posterior
distribution. The figure is borrowed from Radev et al. (2023) and revised to match the specifics of this article.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

4 of 24 System Dynamics Review, 2025

feature of this method is the ability to generate samples from the
posterior distribution at almost no cost: one simply feeds into the
inverse network (analytically derived from the estimated for-
ward NN) a sample from the multivariate Gaussian distribution
and receives on the other end a sample of the posterior, bypass-
ing the potentially slow and expensive MCMC step.

Both NRE and NPE methods offer two important features. First,
they could include an NN that transforms simulation data into
a set of summary statistics before feeding that to the main infer-
ence network. This preprocessing step is crucial for condensing
the data into a manageable and meaningful form that captures
the essence of the dataset. The user should decide on the dimen-
sionality of summary statistics (which should be more than the
number of estimated parameters, often by a factor of 2-4, to pro-
vide sufficient information about the data features). The sum-
mary network will then be trained alongside the inference one
to generate informative summary statistics without the need for
relying solely on hand-made statistics, making the method fully
automated. Second, by inputting different 𝜃 and 𝑥 values, the
network learns not only the posterior for a given 𝑥 but also the
posterior for any dataset that could come from the range of 𝜃 for
parameters (priors in a Bayesian setup) that it has been trained
on. This feature leads to “amortized” Bayesian inference (ABI)
of models: we could fully solve the inference problem for a whole
family of models (same structure, different 𝜃 values coming from
a prior distribution) rather than a single dataset. Amortization
refers to the efficient reuse of computational resources, spread-
ing out the initial computational cost of solving the inference
problem over multiple model instances. It overcomes the scal-
ability challenges often faced in Bayesian inference, offering
a practical solution for complex modeling scenarios when the
same model will be reused (for different instances, subjects,
etc.). Once such amortized estimation is complete, the parame-
ter posteriors for any dataset can be obtained instantly and at lit-
tle cost. This could be a huge benefit when the estimation work
is not one-off. In such cases, the amortization would save in the
order of the number of required re-calibrations.

Training an NN that learns the posteriors for all different data-
sets (generated from a prior distribution) could be computation-
ally expensive, and therefore, “sequential” methods for NRE and
NPE have been developed where the sampling distribution from
possible 𝜃 is narrowed down adaptively: as we learn the likely
(posterior) distribution of parameters given the target dataset 𝑥,
we focus on learning the posterior using samples from this more
limited parameter space. This adaptive approach optimizes the
learning process by concentrating computational efforts on the
most relevant parts of the parameter space. The final network
would then be primarily applicable to the target dataset that
could be estimated more efficiently (Lueckmann et al. 2021).
While ABI may seem dauntingly complex, the task has proved
easier in practice than the combinatorial explosion of the input
data space may suggest. For example, the initial training time
may increase by one to two orders of magnitude compared to
the relevant sequential method, but future inference will be al-
most instantaneous (Radev et al. 2022). This efficiency comes
from the fact that the NN learns well, and becomes more robust,
from being trained on a larger set of input parameters and out-
puts, and thus can better identify viable vs. unlikely parameter
combinations.

Amortizing inference offers two notable benefits. First, once
trained, the parameter posteriors for any dataset can be obtained
instantly and at little cost. The savings would be great when the
estimation work is not one-off; For example, if one needs to es-
timate a model for different experimental subjects who have
different data series using the same underlying model. Second,
amortization enables methods for assessing the reliability of
inference (Gershman and Goodman 2014; Gelman et al. 2020).
These methods require going through the inference process
multiple times for different datasets. For example, consider the
credible intervals (CIs) generated for one of the model parame-
ters. How do we know if those CIs are reliable? One approach
is to generate many synthetic datasets from the model using
(known) parameters that are close to those estimated for our
empirical case, then estimate the CIs for these new datasets, and
finally assess if the fraction of ground truth parameters that fall
within corresponding CIs is consistent with theoretical values.
For example, we expect about 90% of ground truth parameters
to fall within their corresponding 90% CI. To test this expecta-
tion, we need many separate estimations, which are fast with
ABI and costly without.

Other numerical validation methods for inference similarly ben-
efit from ABI. For example, Simulation-Based Calibration (SBC)
(Talts et al. 2020) relies on a simple theorem: If we sample from
a prior distribution for 𝜃, generate a dataset 𝑥 for each 𝜃, and then
sample from the posterior of 𝜃 given the realized 𝑥, we will get
back to the prior distribution of 𝜃. Comparing the initial prior
and the resulting distribution (which should be the same as the
prior) will inform whether the estimated posterior is correct, or
the inference is problematic. SBC starts with many samples from
𝜃 (computationally trivial), generates an instance of 𝑥 for each
𝜃 (a simulation; computationally cheap), then samples from the
posterior of 𝜃 given 𝑥 (computationally cheap with ABI, but very
expensive with non-amortized methods). Thus, absent ABI, SBC
and many other empirical methods for validating inference are
too expensive for all but the simplest models.

Overall, ABI methods have promising features. They enable
inference with only a simulation model and absent likelihoods,
a situation common to system dynamics modeling. Moreover,
whereas non- amortized methods require a separate estimation
for each new dataset, with ABIs a single run through the train-
ing phase enables instant estimation and generation of samples
from parameter posteriors for a large number of datasets. Those
dataset may come from different subjects in experiments, differ-
ent firms in a dataset, and so on. This opens up the path to using
dynamic models for populations of units (people, firms, coun-
tries, etc.) more efficiently. They also provide methods, such as
SBC, for validating the inference framework. Are these methods
able to tackle typical estimation challenges in system dynamics
research and practice? This is the question we address in the
current paper.

3   |   Study Design

In this study, we focus on assessing the applicability of neural
estimation methods to system dynamics models. Reviewing
prior literature, we focus on an ABI method from the NPE cat-
egory, which offers a state-of-the-art performance in this space

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

5 of 24

(Cranmer, Brehmer, and Louppe 2020) with a user-friendly
Python package, BayesFlow (Radev et al. 2022). We study via-
bility (could this method work at all for system dynamics mod-
els?), scalability (how large a model/parameter space is feasible
to tackle?), and ease of use (could the methods be packaged so
that a typical user can benefit from them with basic program-
ming skills?).

Given limited space, we focus on two models, Random Walk
and SEIRb. The first is very simple, with a first-order autocor-
related noise structure with a drift and measurement error.
This model enables the systematic identification of issues re-
lated to the impact of process and measurement noise. The
second model is the classical SEIR plus a feedback loop for
the impact of recent deaths on risk perception and, thus, con-
tact, following Rahmandad, Xu, and Ghaffarzadegan (2022b).
While still simple, with 12 parameters and reference modes
spanning exponential growth, overshoot and collapse, and
overshoot and oscillation, SEIRb offers a more challenging
estimation task.

Traditional estimation methods focus on minimizing the gap
between simulated model outputs and empirical data by chang-
ing model parameters. Deep learning's application to estimation
takes a somewhat different route: it focuses on learning the pat-
terns in data to map how parameter inputs relate to model out-
puts for a wider range of input-output combinations. In system
dynamics, typical inputs are the model parameters, and outputs
are often simulated time series for a subset of model variables.
Once a neural network has learned the input-output mapping, it
can take a set of outputs and infer the parameters (inverse prob-
lem) responsible for generating those outputs. Therefore, a neu-
ral network can be trained by samples of parameter inputs and
simulated model outputs, before it needs to utilize the empirical
dataset(s) at hand. In short, synthetic data (samples of parame-
ters and simulation outputs) are all that is needed for training
the inference neural networks, with the actual inference step for
an empirical dataset becoming trivially easy: you provide the in-
ference network with your dataset, and it outputs the posterior
for model parameters.

Synthetic data plays another important role in validation of
inference methods (Nikolenko 2021; De Melo et al. 2022).
Specifically, for empirical data, we do not know the “true” pa-
rameter values that generated the data. Therefore, we have no
way of assessing the quality of inference: how do we know if
inferred posterior includes true parameters if we do not know
those ground truths? The standard solution to this challenge
is to conduct inference on synthetic “validation” data because
that data comes from simulations with known “ground truth”
parameters. In this step, the neural network is blinded to the
ground truth parameter values in the validation dataset; thus,
the inferred parameter values (and posteriors) may be far from
the ground truth values, alarming the analyst to deficiencies
in the inference process. Combined with ABI, this validation
method is especially powerful because one can quickly gener-
ate a large synthetic validation dataset and conduct the infer-
ence rapidly on all those distinct problems to assess the overall
quality of the inference method. Not only standard practice in
statistics and machine learning (Lueckmann et al. 2021; Radev
et al. 2022), system dynamics scholars have also used synthetic

data to validate their estimation workflow (e.g., see Rahmandad,
Lim, and Sterman 2021).

In the rest of the manuscript, we provide an overview of the es-
timation process using the BayesFlow package, elaborate on the
two test models, apply the tools to these models under different
hyperparameters that control inference, and report on the effi-
cacy of methods, effective NN training settings, and computa-
tional costs.

4   |   Methods

A robust solution to the problem of integrating data and mod-
els allows us to incorporate qualitative data into our estimation
workflow, enables the estimation of model parameters and their
uncertainty in light of data, helps us validate our estimation
framework, and can signal when more iterations on the model
are called for and when we have a satisfactory solution. A prin-
cipled inference workflow ensures these requirements are ex-
plicit and can be addressed in different steps of the process. Such
workflows have been developed with different points of focus;
here, we adopt some of the terminology and steps from an in-
creasingly standard Bayesian inference framework (Gelman
et al. 2020) and adapt them to working with system dynamics
models. We overview the key steps of the inference framework
and then introduce the components we use in our analysis.

4.1   |   Inference Steps

The inference process includes defining a generative engine, the
neural networks for estimation, and the training schedule for
inference.

4.1.1   |   Defining the Generative Engine

Estimation starts with defining a “generative engine” which
consists of three components: (1) Our system dynamics sim-
ulation model. (2) The variables in the simulation model for
which we have real-world data (i.e., an observation set). And (3)
A prior distribution on unknown model parameters. Priors act
as a synthesis of our pre-existing knowledge and assumptions,
guiding the estimation process within plausible bounds. Note
that we often also have parameters that we know with good
certainty (e.g., the total population of a simulated country) or
assume (e.g., using a linear function assumes a power of “one”)
and thus are not part of the prior. Prior plays two roles in the
workflow. First, it limits estimation outcomes to what is feasible
based on the physics of the problem, qualitative data, and prior
theory. Second, by sampling from the prior and simulating the
model, one creates a wide range of behaviors that defines the
whole category of system behaviors feasible under the genera-
tive engine rather than a single reference mode (Forrester 1961).
The ABI aims to estimate parameters coming from any combi-
nation in this space. To keep the exposition simple, we use less
informative (uniformly distributed) priors. This may also create
more diverse outcomes when sampling from the prior, which
are harder to learn by NNs; it is easy to replace these with other
prior distributions.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

6 of 24 System Dynamics Review, 2025

The simulation model should not only include the determinis-
tic processes we want to capture, but also the stochastic ones
that drive a wedge between the perfect model and observed
outcomes in the real word. That will allow inference to learn
how to interpret the magnitude of the noise and associate it with
relevant noise parameters. The distinction between process and
measurement noise may be helpful for thinking about such sto-
chasticity, though they are similarly treated in the workflow.
Process noise incorporates randomness that changes the dy-
namics of the system but is not deterministically known (e.g.,
weather effects in a model of COVID-19), while measurement
noise captures uncertainty in the measurement process that
otherwise does not change the dynamics of the system (e.g., the
measurement errors in surveys). Both types should be explicitly
modeled as part of the simulation model, with their correspond-
ing free parameters (e.g., standard deviation, auto-correlation)
included in our estimated parameters and the prior distribu-
tions. As a result, typical models going into generative engines
are stochastic, a departure from standard practice in classical
system dynamics.

4.1.2   |   Defining Summary and Inference
Neural Networks

Two different neural networks will be used in the ABI process
we discuss here. The summary network converts the output of
the simulation model into summary statistics to be used by the
inference network. The inference network takes those summary
statistics and outputs the posteriors for the parameters. Different
types of neural networks could be used in both, though research
is ongoing to identify better alternatives for different types of
problems. We focus on using default options implemented in the
BayesFlow that are most suitable for the types of problems sys-
tem dynamicists may encounter and briefly note the relevant hy-
perparameters, which could be adjusted for each problem based
on the cumulative knowledge of what works in this space.

One effective summary network architecture for time series
data combines a sequence of multi-layer 1D convolutional net-
works followed by a Long Short-Term Memory (LSTM) network
(Radev et al. 2021). While much detail could be customized, the
most important hyperparameters for such “SequenceNetwork”
architectures are the number of convolutional layers, the num-
ber of LSTM units, and whether the network digests the data
in a “bidirectional” fashion. For any summary network, we
should also specify the dimensionality of the summary statistics
(network output), which should be larger than the number of
parameters (~2–4 times may be a good heuristic from our expe-
rience). Alternatively, or additionally, “manual” summary sta-
tistics could also be incorporated smoothly. We will discuss one
example in our analysis.

For the inference NN, multiple layers of an invertible network
with common architectures, including “affine” (Kingma and
Dhariwal 2018; Ardizzone et al. 2021) and “spline” (Durkan
et al. 2019) (or their combinations, i.e., “interleaved”) are com-
mon. Whereas affine networks are computationally more ef-
ficient to train, spline networks may be more expressive for
complex geometries of posteriors. The architecture and the
number of coupling layers are the primary hyperparameters,

though we only focus our comparisons on the number of cou-
pling layers, going with the default “affine” architecture that
is computationally more efficient and thus more scalable for
higher dimensional estimation problems common to system dy-
namics practice. Table 1 presents key hyperparameters for sum-
mary and inference networks.

4.1.3   |   Specifying the Training Schedule

In BayesFlow, the training of neural networks is automated
under the hood, leveraging the TensorFlow framework and pack-
ages. All an analyst needs to do is to write the code to receive
proposed model parameters from BayesFlow (drawn from the
prior), do the simulations in the software of the analyst's choice
(in our case, Vensim), and return the results to BayesFlow, in
a fast and automated fashion. Training happens by minimizing
a loss function that measures the Kullback-Leibler (KL) diver-
gence between the output of the forward pass on the invertible
network (after receiving inputs from the summary network)
and the standardized multivariate Gaussian distribution. The
training schedule specifies how many simulations are to be con-
ducted and how they should be leveraged in training the NNs.
Training happens through stochastic gradient descent methods,
where the gradients of the loss function with respect to NNs
parameters are calculated on a “batch” of simulations, and NN
parameters (i.e., weights and biases) are then updated with a
“learning rate.” For a given dataset of simulations, training may
proceed by dividing all simulations into the required iterations
for a single epoch of going through all the data (see explanations
in Table 1). For example, 1,024 (=64 × 16) simulations could be
divided into 64 iterations per epoch with a batch size of 16 simu-
lations per iteration. Larger batches give more precise gradients
but take more time to calculate a single gradient. The learning
rate is often dynamically adjusted during the training and is re-
duced through a “decay” strategy (e.g., cosine decay) so that by
the end of the training, the NN parameters are fine-tuned, and
the network is stabilized. Multiple epochs could be defined for
training, and as long as loss values on a validation dataset (to
avoid overfitting) decline over epochs, training on the existing
data adds value. While such “offline” training on a fixed dataset
simulated at the outset is conceptually straightforward, other al-
ternatives may work better in some settings. For example, if the
simulation model is fast and data exchange between simulation
and NN training is quick, fully online training may be preferred,
where every batch calls for new samples (and overfitting is not a
concern). A round-based mixed approach goes through multiple
rounds; at the beginning of each, a new dataset of simulations is
created and appended to the previous ones, and then the training
goes through the required iterations, given the batch size, for the
number of epochs specified per round. This method incorporates
new data continuously but does not discard the old data either.

4.1.4   |   Implementation Notes

All simulations are run in Vensim DSS, and data is transferred
to BayesFlow using either DLL functionality (more efficient for
larger models; simplified with VenPy package) or automated
scripts (using VST package). To maximize efficiency, we use
sensitivity analysis in Vensim that could be parallelized and

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

7 of 24

compiled, with proposed BayesFlow parameters written in a
text file that is input to sensitivity analysis. We have written the
Python functions to integrate these capabilities with Vensim
seamlessly, and the code is available for others to use and ex-
tend to new problems (see the GitHub link in the Supporting
Information). With this machinery in place, the application
costs are rather minimal after an initial installation process that
may take a couple of hours, and most users do not need much
coding to leverage the tools (and what coding is needed could be
handled with the support of increasingly capable generative AI
platforms such as ChatGPT and Gemini). It is straightforward
to use other simulation software instead of Vensim, if they could
receive programmatic instructions to generate a batch of simula-
tions and output it back in text or DLL connections. In practice,
the simulation time may not be too long for most system dynam-
ics models, where a few million simulations should suffice for
ABI; rather, the training time for NNs becomes the main com-
putational bottleneck, and there the use of GPUs proves helpful,
cutting training times by a few folds compared to CPU-based
training. All reported analyses were conducted on a Windows
environment using an NVIDIA A2 Tensor Core GPU with 16GB
GPU Memory. Although the PC has abundant CPU (128 Cores)

and RAM (512GB) resources, the BayesFlow algorithm barely
used more than 2% of such resources compared to more than
95% utilization of GPU during our experiments.

4.2   |   Inference Validation and Assessment

Once the NN is trained, the posteriors for any dataset can be
(almost) instantaneously generated. We need metrics to quantify
how effective this process is. The metrics we explore below focus
on different costs of inference and the internal consistency of
the inference process, that is, if the model was correct, how well
could we identify the parameters and their uncertainty?

4.2.1   |   The Data and Computational Requirements
for Estimating the Model

How many simulations are required for satisfactory training?
How much training time is needed for a satisfactory output?
One could change the data/training size and observe the impact
on performance or fix the data/training time and measure the

TABLE 1    |    Key hyperparameters and their definitions.

Category Hyperparameter Explanation

Summary network Convolutional layers A computational layer used in neural networks that processes data
through a series of learnable filters. This layer helps capture spatial
or temporal hierarchies in data by applying convolutions over the

input and passing the result through an activation function.

Summary dimensions The size of the output vector produced by the summary network.
It represents the condensed information extracted from the

input data, which is then fed into the inference network.

LSTM units (Number of) basic units of a Long Short-Term Memory (LSTM) layer, designed
to remember information for long periods. LSTM units help process time-

series data by capturing temporal dependencies and sequences in the input.

Inference network Coupling layers (Number of) layers of normalizing flow network which learn
the shape of posterior distribution under different datasets. They
allow the model to perform intricate transformations by coupling

parts of the input reversibly, aiding in efficient inference.

Bidirectional Whether to use bidirectional LSTMs that allow the network to process
data in both forward and backward directions. This improves the

model's understanding of early data and utilizing it more effectively.

Training Learning rate The learning rate determines the size of the steps taken while
optimizing the network's weights. A higher learning rate may

lead to faster convergence but can become unstable while a lower
learning rate ensures more stable but slower convergence.

Batches The number of training samples processed to calculate gradients before
the NN's internal parameters are updated. Batch size affects the speed

and stability of the learning process, with smaller batches generally
providing more frequent but less reliable updates and larger batches

reducing the number of updates but making each more precise.

Epochs One complete pass through the current training dataset. The number of
epochs determines how many times the learning algorithm will work through

the entire dataset. More epochs allow the model to better learn from the
data at the cost of increased computational time and potential overfit.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

8 of 24 System Dynamics Review, 2025

change in performance. For data input, we focus on the number
of simulations conducted, and for computational costs, we re-
port wall time along with hardware specifications.

Other useful measures include posterior contraction and Z-
score. The former measures the shrinkage fraction in the stan-
dard deviation of parameters going from the prior distribution to
the estimated posteriors. A value close to one suggests that infer-
ence has extracted a lot of data and provides reliable estimates
for the parameter. Posterior Z-scores normalize and compare
the estimated parameter values against the ground truth, with a
value of 0 offering perfect recovery and an expected spread with
a standard deviation of one for a good inference.

4.2.2   |   Quality of Inference

Multiple metrics could inform the quality of inference. The loss
function from the training of neural networks is a useful indica-
tor, especially when applied to a validation dataset not used in
training (and thus not suffering from overfitting). While the KL
divergence value is not fully comparable across problems, for a
given problem, the loss values are directly comparable, and typi-
cally, values below 0 start to indicate good convergence.

SBC provides a more rigorous method for assessing inference qual-
ity (Talts et al. 2020). The inference is deemed reliable if the prior
distribution for each parameter is similar to the samples of posteri-
ors from different synthetic datasets generated (by the simulation
model) after drawing the parameters from the prior distribution,
generating data, and inferring posteriors. By generating hundreds
of different parameter sets, many datasets per each parameter set
(which would be different given the stochasticity of models), and
conducting inference on all those data, one can use Empirical
Cumulative Distribution Function plots (ECDF) (Säilynoja,
Bürkner, and Vehtari 2022) to formally test the quality of inference.

The precision of estimated CIs is also intuitive and informative.
We first create different synthetic datasets from ground truth
parameters drawn from the prior distribution. Next, we estimate
the posteriors and CIs for those and assess the empirical fraction
of ground truth falling into different CIs, comparing that to the
expected fraction. A 45° line suggests a good calibration of CIs.

4.3   |   Model Assessment

Finally, model assessment could be pursued based on a host of
metrics. Many focus on the predictive performance of the mod-
els out of sample, a useful measure, though one with caveats re-
lated to loss of precious data and limited information on how
much room for improvement there may be. Another useful set
of measures identifies the gap between empirical summary sta-
tistics and those coming from an estimated simulation model.
Aggregating the gaps into a single measure, such as Maximum
Mean Discrepancy (MMD) (Gretton et al. 2012), provides formal
tests for assessing the quality of the model in light of the observed
data and can inform future iterations (Schmitt et al. 2022). Due
to limited space, we will not be utilizing this approach in the
current paper and will only introduce the idea, given its rele-
vance for an iterative inference workflow.

4.4   |   Model 1: Random Walk

Figure 2 shows the structure of the Random Walk model. This
model is, by design, very simple. It focuses on capturing pro-
cess and multiplicative measurement noise which are sufficient
to rule out explicit likelihood functions, but otherwise lacks
many complexities common to SD models. The state (S) of the
system evolves over time through processes known as drift (d)
and shock (K). Drift (d) represents the predictable or “expected”
change, while shock (K) represents the stochasticity, process
noise, in the dynamics. Shock (K) is modeled as a normal distri-
bution with a process noise standard deviation of σp. In addition,
the state observed (SObs) is derived from the “true” state (S) with
a multiplicative normally distributed measurement noise char-
acterized by a standard deviation of σm. All model parameters
(i.e., d, S0, σp, and σm) are drawn from uniform distributions,
with their corresponding minimum, maximum, and pseudo-
random number stream (ns) (the additional links from ns to the
parameters are hidden for visual clarity). Table 2 summarizes
the model formulations and priors. Online Appendix S1 includes
full model documentation.

Figure 3 shows the model's different modes of behavior as a
result of unique sets of parameters generated through random
draws from the uniform distributions of the priors.

4.5   |   Model 2: SEIRb

Figure 4 shows the simplified structure of the SEIRb model.
The model is similar to the classical SEIR (Susceptible, Exposed,
Infectious, Recovered) model with an additional endogenous
behavioral-risk response mechanism where transmission in-
tensity grows (declines) as the death rate declines (grows). The

FIGURE 2    |    Structure of the Random Walk model.

TABLE 2    |    Parameter priors of the Random Walk model that are
estimated.

Name Prior Units

Drift 𝑑 = Uniform (−1, 1) 1/Time

Initial state 𝑆0 = Uniform (0, 10) Dimensionless

Process noise
standard deviation

𝜎p = Uniform (0, 0.5) 1/Time

Measurement
noise standard
deviation

𝜎m = Uniform (0, 0.5) Dimensionless

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

9 of 24

details of the model are described elsewhere (e.g., Rahmandad,
Xu, and Ghaffarzadegan 2022b). In short, the Transmission
Intensity (𝛽) regulates the speed of transmission, and Patient
Zero Arrival Time (𝑡0) specifies the introduction time for the
disease. The Infection Fatality Rate (IFR) is the fraction of in-
fected people who die. Time to onset and removal are assumed
to be known based on clinical knowledge and not separately es-
timated. Besides these core SEIR components, a few parameters
regulate the behavioral feedback loop. Two time constants, Time
to Onset (ts) and Time to Removal (tr), regulate the adjustment of
the perceived risk of death (PDR) to the actual death rates using
an asymmetric first order smooth. Two parameters, Sensitivity
to Death (α) and Death Risk Diminishing Impact (𝛾), regulate
the strength of behavioral response (Effect of Perceived Risk on
Attack Rate, EPA) using the following function:

We assume three data series are observable: Onset, Recovery,
and Deaths. These measurements are imprecise, and part of the
model's stochasticity comes from the multiplicative measure-
ment noise affecting Simulated Onset Data (SOD), Simulated
Recovery Data (SRD), and Simulated Death Rate Data (SDD)2.
The stochasticity is also caused by the Process Noise (PN) im-
pacting the Exposure Rate (ER). These noise functions all
include Gaussian distributions with their corresponding (un-
known) standard deviations (σi; for a total of 4 parameters),
with PN being also first-order autocorrelated and thus including
another unknown parameter (Process Noise Correlation Time,
Crrτ). Overall, the model includes 12 unknowns (to be estimated
parameters), two assumed/known parameters, and three daily
observed time series that inform inference.

Figure 5 shows the model's behavior generated using different
parameter values randomly drawn from the uniformly distrib-
uted priors. The simulations represent different modes of behav-
ior (e.g., overshoot and oscillation) for onset, recovery, and death
rate data. For simplicity, we assumed an identical population
(one million) across all simulations. All parameter priors, in-
cluding the noise standard deviations and correlation time, are
randomly drawn from their corresponding uniform distribu-
tions and used in the neural estimation. Table 3 summarizes the
model parameters being estimated and their priors. We set the
parameter boundaries based on the feasible empirical ranges in
the case of COVID-19 for different parameters (e.g., Rahmandad,
Xu, and Ghaffarzadegan 2022b). Online Appendix S1 includes
full model documentation.

5   |   Results

In reporting the results, we start by discussing experiments on
various hyperparameters of the inference algorithm. Specifically,

EPA =
1

1 + (� ⋅PDR)�

FIGURE 3    |    Random Walk model behavior (50 simulations) using
randomly drawn values from parameter priors.

FIGURE 4    |    Simplified structure of the SEIRb model.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

10 of 24 System Dynamics Review, 2025

for each model, we set a baseline (largely aligned with default
parameters of BayesFlow) and assess how deviations in each pa-
rameter from that baseline impact training performance. Based
on those results, we then specify an “optimized” hyperparame-
ter setting for each model and conduct ABI using those hyperpa-
rameters and with different levels of simulation data informing
inference. Below, we first report on the experiments with hyper-
parameters across both models and then share inference results
for each model separately.

5.1   |   Exploring Inference Hyperparameters

To have a better understanding of the role of hyperparameters in
the inference performance (i.e., training and validation losses)
and the training time, we conducted a series of experiments with
both models before finalizing the setup for the main inference
work. For these experiments, we defined baseline hyperparam-
eter values based on the default settings provided by BayesFlow
and our initial intuition of the required adjustments around
those values. We chose the training parameters so that enough
data is provided for inference to start working, but not too well,

so there is room for improvement, and inference time is rela-
tively short. Then, we varied the hyperparameters of inference
around these baseline setups to observe the impact of individual
assumptions on the training time and (validation sample) loss
values for both Random Walk and SEIRb models.

From the insights we gained through these experiments, which
will be discussed below, we came up with sets of hyperparam-
eters that would provide the “Optimized” NN performance.
Next, we used the “Optimized” hyperparameters with the same
amount of data (as baseline) and an “Extended” version where
more data (with optimized hyperparameters) provides the final
outcome of inference. Table 4 summarizes the hyperparameters
used in each scenario and some outcomes.

Variations in the hyperparameters result in changes in the (vali-
dation) loss value and training time, as shown in Figures 6 and 7.
In general, more complex network structures (e.g., a higher num-
ber of convolutional layers or coupling layers) are more expres-
sive and can offer better fit (smaller loss values; values below zero
show getting to convergence, although the optimal value that sig-
nals perfect training will depend on the problem). However, they
can increase the computational cost and may increase the risk of
overfitting. In fact, convolutional layers do not offer much value

TABLE 3    |    Parameter priors of the SEIRb model that are estimated.

Name Prior Unit

Infection fatality rate IFR = Uniform
(0.003, 0.01)

Dimensionless

Sensitivity to death α = Uniform
(0.01, 100)

Day/Person

Transmission
intensity

𝛽 = Uniform
(0.1, 4)

1/Day

Death risk
diminishing impact

𝛾 = Uniform (0, 5) Dimensionless

Time to perceive 𝑡p = Uniform
(5, 100)

Day

Time to reduce risk 𝑡d = Uniform
(10, 400)

Day

Patient zero arrival
time

𝑡0 = Uniform
(0, 100)

Day

Recovery
measurement noise
standard deviation

𝜎r = Uniform
(0, 0.3)

Dimensionless

Onset measurement
noise standard
deviation

𝜎o = Uniform
(0, 0.3)

Dimensionless

Death rate
measurement noise
standard deviation

𝜎d = Uniform
(0, 0.3)

Dimensionless

Process noise
correlation time

Crrτ = Uniform
(2, 20)

Day

Process noise
standard deviation

𝜎p = Uniform
(0, 0.3)

Dimensionless

FIGURE 5    |    SEIRb model behavior (200 simulations) using random-
ly drawn values from parameter priors.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11 of 24

TABLE 4    |    Hyperparameters used during neural network training for each model.

Random Walk SEIRb

Baseline Optimized Extended Baseline Optimized Extended

Summary network

Convolutional layers 2 4 4 3 4 4

Summary dimensions 10 20 20 30 40 40

LSTM units 128 128 128 128 128 128

Manual summary statistics False True True False True True

Inference network

Coupling layers 4 6 6 6 8 8

Learning rate 0.0005 0.0010 0.0010 0.0010 0.0010 0.0010

Bidirectional False True True True True True

Training

Batches 32 32 32 32 32 32

Epochs 20 20 10 20 20 10

Rounds 5 5 20 5 5 10

Sims per round 1024 1024 8192 8192 8192 20,000

Loss −4.368 −4.148 −5.307 4.715 1.726 −4.574

Wall Time 5 min 28 s 6 min 4 s 4 h 19 min 1 h 5 min 1 h 12 min 5 h 40 min

FIGURE 6    |    Impact of hyperparameters on validation loss and training time for the Random Walk model. Labels denote specific configurations
with their corresponding values: Sd5, Sd10, Sd20 for Summary Dimensions; +man (with manual statistics), no_man (without manual statistics); Cl1,
Cl2, Cl3 for Convolutional Layers; B16, B32, B64 for Batches; e10, e20, e30 for Epochs; LR5, LR10, LR20 for Learning Rate (LR10 means: LR = 0.0010);
L64, L128, L256 for LSTM Units; f16u, f32u (unidirectional), f16b, f32b (bidirectional) for Float; CP2, CP4, CP6 for Coupling Layers.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

12 of 24 System Dynamics Review, 2025

in our settings, with the LSTM part of the summary network hav-
ing the bigger impact. We find value in using bidirectional LSTM
summary networks, so we adopt that into our optimized settings
and the baseline for SEIRb. Inference coupling layers and LSTM
units are the largest contributors to NN training time (and bidi-
rectional doubles the size of the LSTM network; so, it also impacts
training time). Using float16 number formats offers slight savings
but not enough to be worthwhile in our setup (given additional
work to ensure robustness to smaller numerical precision).

Furthermore, keeping total data constant, more simulations
per batch can significantly reduce the training time but at the
expense of worse loss values (because the NN is updated fewer
times). However, one could increase the number of epochs
with larger batch sizes to get to a similar training time, mak-
ing it challenging to find the optimal batch size. Nevertheless,
the general recommendation is to avoid higher batch sizes to
prevent memory allocation issues and use powers of 2 to uti-
lize computational resources more efficiently. So, we find val-
ues of 32 and 64 to be best for our experiments and models. In
addition, a greater number of epochs improves fit. However,
they linearly increase the training time and become less valu-
able as the model starts to overfit after extracting the gener-
alizable information in a dataset. We find learning rates only
modestly impactful, and a value of 0.0010 is a good choice in
our experiments.

More summary statistics could add some value up to a point
(e.g., around 2–4 times the number of parameters) but become

ineffective and potentially problematic if going much beyond
that. To define manual summary statistics, we first calcu-
late, for each data series, the residual between the data and
a Savitzky-Golay second-order fitted line to the data. We
then use the 0, 3, and 10 period lagged covariance matrix of
these residuals across different data series. For example, in a
Random Walk model that includes residual variance, 1-period
lagged autocorrelation of residual, and 10-period lagged au-
tocorrelation. For SEIRb, the covariances across residuals
for different data series are added for different lags. We note
that using manual summary statistics helps speed up the
early identification of noise parameters but does not provide
a longer-term benefit to the Random Walk model because it
is already performing rather well by the end of training in the
baseline. In contrast, manual summary statistics result in sig-
nificant improvements in the SEIRb model (which is far from
fully tuned in the baseline). Therefore, we adopt manual sum-
mary statistics for the final NN training. In addition, we were
mindful of overfitting caused by using the same data multi-
ple times (in multiple rounds and epochs), so in the extended
training for the SEIRb model, while we increased the number
of rounds too, we simultaneously decreased the number of ep-
ochs to avoid overfitting.

5.2   |   Random Walk Inference Results

Here, we focus on reporting inference results from the “ex-
tended” run of the Random Walk model, though to provide

FIGURE 7    |    Impact of hyperparameters on validation loss and training time for the SEIRb model. Labels denote specific configurations with
their corresponding values: Sd20, Sd30, Sd50 for Summary Dimensions; +man (with manual statistics), no_man (without manual statistics); Cl2,
Cl3, Cl4 for Convolutional Layers; B16, B32, B64, B128, B256 for Batches; e10, e20, e30 for Epochs; LR5, LR10, LR20 for Learning Rate (LR10 means:
LR = 0.0010); L64, L128, L256 for LSTM Units; f16u, f32u (unidirectional), f16b, f32b (bidirectional) for Float; CP4, CP6, CP8 for Coupling Layers.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

13 of 24

better intuition on the impact of more/less training and data,
we also compare that with the “optimized” run. To start, let us
consider how an ABI inference is often utilized in practice, that
is when we want to estimate model parameters based on one (or
more) “empirical” datasets. The first thing to note is that ABI
does NOT need the empirical dataset to build inference NNs!
All it needs is the generative engine (the simulation model, the
observable outcomes, and the priors) and settings for the train-
ing of NNs. The inference is completed by simulating the system
dynamics model using different draws of the priors and train-
ing the NNs so that they identify reasonable summary statistics
and are able to generate the posteriors for parameters given any
simulated dataset. The main output of ABI is the trained sum-
mary and inference neural networks (e.g., for “optimized” and
“extended” cases) and the “empirical” datasets play no role up
to this point. When those NNs are trained, they could be used
for inference on any “empirical” (or synthetic) dataset using the
generative engine at hand.

Let us consider one concrete example of such a dataset for
Random Walk. Figure 8a shows the time trajectory of a sin-
gle dataset for the Random Walk model (in black dots con-
nected with dashed lines). The dataset is indeed generated
by the Random Walk model (i.e., is synthetic) and as such we
know the true values of parameters and are confident that the
model structure is “correct.” A real “empirical” dataset would
have a similar data structure, but we would not know about
the true parameter values. Now, we can input this dataset into
the trained NNs and ask for samples of posteriors for model
parameters. Figure 8b shows a sample of 500 draws from the
posterior coming out of ‘extended’ inference in marginal and
bi-variate plots. Black dots/dashed black lines point to the
ground truth for each parameter. The diagram demonstrates
that ground truth falls within the inferred posteriors. Table 5
reports the summary of posteriors, including median, mean,
maximum a posteriori (MAP), and 95%-CI and the ground
truth of the parameters used for generating the single syn-
thetic dataset, indicating that posteriors are well informed
by data.

In other words, the algorithm has learned how to correctly iden-
tify the parameter values with reliable CIs, at least for this sin-
gle dataset. In fact, one could take a sample of parameters from
posterior, simulate the model again (with different noise seeds to
generate independent random variations) and observe how the
ensemble of the simulated outcomes vary over time. The rele-
vant uncertainty intervals for such “posterior predictive check”
are graphed in Figure 8a showing good correspondence with
the data.

At this point, one might ask: how do these outcomes differ
from the conventional calibration methods that most system
dynamics modelers are familiar with? Figure 8a also includes
the calibration trajectory obtained by minimizing the com-
mon least squared error between the simulation and data.
That calibration offers estimates for two of the parameters:
𝑑 = −0.791 and 𝑆0 = 9.530. Comparing this outcome with the
ones obtained through ABI reveals some key differences. First,
the traditional calibration methods are deterministic, failing
to explain the magnitude of variations around the mean and
their ranges in data. Therefore, they offer no estimates for

noise parameters (𝜎p and 𝜎m). Second, unlike the ABI results,
conventional calibration methods result in point estimates for
parameter values and do not offer any information on the pos-
terior distributions or credible intervals. So, we actually do not
know how good those estimates are: could the drift value be
−0.9? we cannot answer that in a simple calibration. These
limitations highlight two key advantages of using an ABI.

A third issue arises when one asks whether the reasonable in-
ference we obtained on a single dataset was merely by chance
or the method can reliably recover the model parameters at
scale. Traditional calibration is silent on this question, but
ABI provides a systemic method to answer it. Specifically, we
could conduct inference on many different (synthetic) data-
sets and compare the results against the ground truth for each.
Figure 9a shows the results of such an exercise. Here, we do
the inference 1000 times on different (synthetic) datasets (sim-
ulating the model with different parameters drawn from the
priors and different noise streams). Then, for each synthetic
dataset, we use the trained (in an “extended” scenario) NN to
draw 1000 samples of the inferred posteriors for parameters.
Note that the amortized nature of ABI makes these steps fast
and easy: drawing 1000 posterior samples for the 1000 dif-
ferent synthetic datasets takes only a few seconds. With that
data we graph the ground truth (x-axis) against the median of
the posterior and the 10–90 percentile range on the y-axis for
each estimated parameter. The closer the graph is to the 45°
line with tighter 10–90 ranges, the tighter and more accurate
the posteriors. The differences in accurate recovery of ground
truth across parameters are notable. “Drift” is almost perfectly
identified; 𝑆0 and 𝜎M are also well identified, especially if the
values for these two parameters are rather small. 𝜎P remains
rather uncertain in many cases even after plenty of training
(additional experiments show that more data and training do
not reduce the uncertainty here). In other words, the variance
in process noise is hard to pin down. The reason is that in this
model, process noise is additive, whereas measurement noise
is multiplicative. Therefore, the impact of measurement noise
increases (to 10 s) as the stock values grow larger (in absolute),
overwhelming any signal of the process noise (typically below
0.5 in each period) that could be detectable in the dataset, un-
less drift is close to zero, or measurement noise is very close
to zero. Measurement noise is, however, easier to detect given
how its impact scales with the size of the underlying stock.

The precision of the estimated credible intervals could also
be assessed more formally. Figure 9b graphs the fraction of
ground truth parameters that fall within different (centered)
percentiles of posteriors. For example, a Y value of 0.52 at X of
0.5 means 52% of ground truth parameters have fallen within
the centered 50% (i.e., 25–75 percentile interval) credible in-
terval for the parameter. Perfect CIs fall on the 45° line, as
they do in this example, with lines below 45° showing over-
confident CIs and lines above pointing to over-conservatism
of CIs.

Another way to visualize these effects is to consider two
qualities of inferred parameters: how much the posterior has
shrunk (Posterior Contraction: one minus the ratio of poste-
rior standard deviation to that of prior) and if it is biased in
comparison to ground truth. For each of the synthetic datasets,

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

14 of 24 System Dynamics Review, 2025

posterior contraction (x-axis) is graphed against the posterior
Z-score (y-axis) in Figure 9c. The latter measures the distance
between ground truth and the mean of the posterior sample
for each estimation and divides that by the standard deviation
of the posterior sample. Values centered around zero and not
falling much outside of the [−2,2] range are usually desired

and show limited bias. By this measure, all our parameter re-
coveries are unbiased, while the posterior contraction is high
for all but 𝜎P, where it is smaller (and highly variable). Note
that this observation does not point to a weakness of inference
but the inherent complexity of estimating the process noise pa-
rameter here.

FIGURE 8    |    (a) Posterior predictive check displaying the credible intervals derived from simulating the Random Walk model using 500 parameter
samples drawn from the posterior distributions from the “extended” inference. The black dots connected by dashed lines represent the synthetic data
(using ground truth parameters, and unknown noise streams), and (b) joint posterior distributions for 500 samples from the “extended” inference.
Off-diagonal plots display the bivariate posterior distributions between parameter pairs, while the diagonal plots represent the marginal posterior
distributions for each parameter. The vertical dashed lines (or black dots on the off-diagonal plots) indicate the ground truth of parameter values used
to generate the synthetic data.

Conventional calibration

(a)

(b)

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

15 of 24

ABI enabled the large-scale experiments above to be conducted
in only a few seconds, with the majority of the time needed for
simulating the synthetic datasets. These experiments provide
one set of reassuring evidence about the reliability of inference.
Another formal way to validate the inference procedure is to
use Simulation Based Calibration (SBC; Note that “Calibration”
in this case is used somewhat differently than the norm in the
system dynamics community, pointing to fine-tuning of the in-
ference procedure rather than identification of any single param-
eter). Starting with a sample of M prior draws, we will generate

M datasets and N posterior draws per each dataset, comparing
the distribution of M prior draws with the M*N samples of poste-
riors to test if they follow the same distribution. Formal tests are
available for this purpose, and Figure 10 shows the ECDF rank
test results for the Random Walk parameters. When the Rank
graph exits the confidence bar (gray ovals for 95% in this case),
it signals a potential mismatch between prior and posterior sam-
ple distributions. In this case, we see no such deviation (beyond
luck) and thus can conclude that our inference method is work-
ing well and creating reliable posteriors for each parameter.

TABLE 5    |    Posterior summaries and 95%-CIs for each model parameter inferred from the Random Walk model synthetic data generated using
ground truth parameter values.

Parameter Median Mean MAP 95%-CI Ground truth Unit

Drift 𝑑 −0.773 −0.774 −0.771 [−0.883 to −0.669] −0.812 1/Time

Initial state 𝑆0 8.406 8.417 8.288 [7.166 to 9.676] 8.673 Dimensionless

Process noise standard deviation 𝜎p 0.435 0.426 0.464 [0.318 to 0.500] 0.436 1/Time

Measurement noise standard
deviation

𝜎m 0.305 0.305 0.305 [0.261 to 0.351] 0.309 Dimensionless

FIGURE 9    |    Inference using 1000 different synthetic datasets from the Random Walk model, extended run, including the (a) estimated param-
eter against the ground truth, (b) fraction of ground truth parameters that fall within different (centered) percentiles of posteriors, and (c) posterior
contraction against posterior Z-score.

(b)

(c)

(a)

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

16 of 24 System Dynamics Review, 2025

Overall, the results show that the inference procedure works
well on the Random Walk model and offers reliable parameter
estimates and CIs.

5.3   |   SEIRb Inference Results

In reporting the results for SEIRb experiments, we follow the
same flow as the Random Walk model. First, Figure 11 shows
a single synthetic dataset (panel a, consisting of onset, recovery,
and death data) and inferred posteriors and ground truth for the
12 parameters (panel b). The example dataset includes a large
wave of the epidemic followed by smaller ones over a 300-day
period. The synthetic dataset is generated using random draws
from the prior values, and it is not used during the training of
the neural network. Therefore, it is new unseen data for the NN.

Table 6 summarizes the posteriors, including median, mean,
maximum a posteriori (MAP), and 95%-CI as well as the ground
truth parameters used for generating the single synthetic data-
set. A few observations are noteworthy. First, parameter posteri-
ors are enveloping the ground truth very well (both in Figure 11
and Table 6). Second, posteriors for some parameters show
significant interdependence, for example, higher values of α
coincide with higher values of 𝑇p in the posterior samples. The
intuition is that the same level of behavioral response may point
to higher responsiveness (α) combined with slower risk percep-
tion (higher 𝑇p), or lower responsiveness combined with faster
risk perception, an insight not previously noted in the analysis of
the SEIRb model (Rahmandad, Xu, and Ghaffarzadegan 2022b).
Reliable posteriors should reveal such interdependencies that
matter conceptually. Third, the posterior for some parameters
remains rather wide, most notably those related to parameters of

FIGURE 10    |    Empirical cumulative distribution functions (ECDF) of rank statistics for Random Walk model, extended run.

(a)
FIGURE 11    |    (a) The synthetic data (black dots connected by dashed lines) used for inference enveloped by posterior predictive check displaying
the credible intervals derived from simulating the SEIRb model using 500 parameter samples drawn from the posterior distributions from the “ex-
tended” inference, and (b) joint posterior distributions for 500 samples from the “extended” inference. Off-diagonal plots display the bivariate poste-
rior distributions between parameter pairs, while the diagonal plots represent the marginal posterior distributions for each parameter. The vertical
dashed lines (or black dots on the off-diagonal plots) indicate the ground truth of parameter values used to generate the synthetic data.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

17 of 24

process noise (CrrT and 𝜎PN). The CIs for outcomes envelope the
observed data closely and consistent with the implied uncertain-
ties. So, overall, this single inference provides encouraging and
consistent results. See Online Supporting Information for more
details and another example.

Figure 12 reports on large-scale experiments for validating the
inference framework for SEIRb more generally. The spread in
recovered parameters (and their 10-90 CIs), as well as posterior
contraction graphs, suggest reliable inference for IFR, 𝑇0, 𝛾, 𝛽,
and measurement noise standard deviations (𝜎R, 𝜎O, 𝜎D), weaker
contraction for α, 𝑇p (due to their collinearity; otherwise individ-
ually each would have been well identified) and 𝑇d, very weak

contraction for process noise standard deviation (𝜎PN) and almost
no contraction for process noise correlation time. These graphs do
not establish if the parameters are efficiently identified (and thus
not any better identifiable given this type of observed data) or that
better identification can be achieved with more data (and/or train-
ing). To assess these possibilities, one needs to run more training
and see if contraction scores improve at all.

It is encouraging to see that Z-scores show no systematic bias
in recovered parameters, and we do not see many notable out-
liers. The CI precision plots are mostly on the 45° line, suggest-
ing reliable CIs but with some deviations for 𝑇0 and potentially
IFR and CrrT. In all those cases, the CIs are a bit too tight, a

FIGURE 11    |     (Continued)

(b)

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

18 of 24 System Dynamics Review, 2025

potential concern as such bias may make the analyst overcon-
fident. Those concerns are reinforced by the ECDF graphs in
Figure 13. Again, while for most parameters, the test finds no
difference in prior and sampled posterior distributions, for a
few, it does. Those include the ones with imprecise CIs but also
𝜎D. Curiously, these parameters are the ones with very good
contraction; that is, the model is identifying the ground truth
very closely but is somehow failing in correctly inferring the
shape of the posterior distribution, at least in some datasets.

While poor identification of CrrT may explain the SBC diver-
gence for that outcome, results for 𝑇0 and IFR may, in fact,
be pointing to a more general challenge in ABI. If the data
very accurately identifies some parameter (such as these two),
the posterior will be very tightly sampled (close to the ground
truth). However, during the training of the inference and sum-
mary networks, the training samples are uniformly sampled
from the prior, and thus, any small parameter region may get
very few samples. For example, if the ground truth for 𝑇0 is 7.1
(the neighborhood for our “empirical” dataset in Figure 11),
the tight posterior will only be informed by samples falling be-
tween 6.7 and 7.5. Yet those samples are few (~1% of the total).
The problem could be even more challenging. The higher the
dimensionality of the parameter space, the more acute this
problem can get because the curvature of the posterior for one
parameter may depend on the values of other parameters. In
those cases, the relevant combinations observed in training
data shrink fast (with parameter dimensionality), reducing the
accuracy of inferred posteriors. Interestingly, this challenge
becomes more acute when the parameters are best identified
by the available data. Overcoming this challenge may require a
lot more training or giving up ABI in favor of sequential NPE.

Overall, the method is largely effective for the SEIRb example
with unbiased posteriors that extract a lot of the information

from the data and largely (but not fully) reliable posteriors. The
problems in posteriors are most acute for the best-identified pa-
rameters with very sharp curvature in their posteriors not fully
calibrated with the limited data in the relevant region, as well as
the worst identified parameters.

5.4   |   Impact of Training Budget

The results above focused on the “extended” runs, which include
significantly more data than baseline or optimized setups. In
Figure 14, we show the recovery and SBC plots for Random Walk
from the optimized run to see how well inference performs with
32 times less data (1024 × 5 vs. 8096 × 20) and 56 times less train-
ing (given more training per dataset) than the extended case,
which brings down the wall time for inference from 5 h to 5 min.
The results are rather encouraging. Only the contraction for 𝜎p
is notably weaker with posterior problems identified for that pa-
rameter, and perhaps for 𝑆0. In short, the Random Walk problem
is easy, and in fact, we can get comparable performance as the
optimized scenario with even less training and data, completing
a reasonable inference in less than 2 min. That is partly made fea-
sible using manual summary statistics that are especially helpful
for identifying the 𝜎M quickly. Those summary statistics are spe-
cifically focused on characteristics of residuals and, as such, are
especially informative about features of measurement noise that
take more time to detect through automated summary statistics.

A similar comparison for SEIRb reinforces the same basic find-
ings. With an order of magnitude less data/training, we can still
identify most model parameters fairly well, with SBC outcomes
that suggest the results are reliable (Figure 15). However, for
some parameters (e.g., IFR), the CIs are much wider in the “op-
timized” compared to the “extended” scenario, even though
the SBC plots hint at no problem in inference. This observation

TABLE 6    |    Posterior summaries and 95%-CIs for each model parameter inferred from the SEIRb synthetic data generated using ground truth
parameter values.

Parameter Median Mean MAP 95%-CI Ground truth Unit

Infection fatality rate IFR 0.009 0.009 0.009 [0.009–0.010] 0.009 Dimensionless

Sensitivity to death α 10.029 10.362 9.893 [2.692–21.103] 12.327 Day/Person

Transmission intensity 𝛽 2.278 2.319 2.255 [1.802–3.111] 2.495 1/Day

Death risk diminishing impact 𝛾 1.842 1.892 1.814 [1.524–2.533] 1.74 Dimensionless

Time to perceive 𝑡p 66.869 64.226 68.539 [16.951–100.000] 83.774 Day

Time to reduce risk 𝑡d 25.228 25.926 24.842 [19.789–36.290] 22.211 Day

Patient zero arrival time 𝑡0 7.129 7.131 7.138 [6.855–7.424] 7.068 Day

Recovery measurement noise
standard deviation

𝜎r 0.209 0.209 0.209 [0.175–0.241] 0.211 Dimensionless

Onset measurement noise
standard deviation

𝜎o 0.094 0.094 0.096 [0.067–0.122] 0.086 Dimensionless

Death rate measurement noise
standard deviation

𝜎d 0.181 0.181 0.179 [0.135–0.227] 0.209 Dimensionless

Process noise correlation time Crrτ 11.100 11.083 11.258 [2.000–20.000] 17.165 Day

Process noise standard deviation 𝜎p 0.151 0.153 0.143 [0.000–0.300] 0.081 Dimensionless

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

19 of 24

suggests that the SBC method does not fully reveal the efficiency
of inference and may confirm the reliability of a method with
wider (than optimal) posteriors (but ones that show no bias in
one direction or another). Additional explorations showed that,
again, the manual summary statistics were especially helpful
for identifying the measurement noise parameters. Payoff values
(see Table 4) in baseline and optimized runs also point to room
for improvement, as best payoffs would go below zero and are
often smaller with larger numbers of parameters. Nevertheless,

the trained networks start to offer useful inference outcomes for
SEIRb with just 40 k simulations and an hour of training.

6   |   Discussion

In this paper, we introduced the emerging neural network-
based estimation methods for system dynamics practitioners.
Just as people can do an impressive job of hand calibration by

FIGURE 12    |    Inference using 1000 different synthetic datasets from the SEIRb model, including the (a) estimated parameter against the ground
truth, (b) fraction of ground truth parameters that fall within different (centered) percentiles of posteriors, and (c) posterior contraction against pos-
terior Z-score.

(a)

(b)

(c)

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

20 of 24 System Dynamics Review, 2025

observing a few simulations (Lyneis and Pugh 1996), neural net-
works can learn to associate different parameter combinations
with different model behaviors to estimate model parameters
and CIs. Focusing on ABI using NPE methods with estab-
lished tools, we found that the parameters of simple to mod-
erately complex system dynamics models could be effectively
estimated in an amortized fashion. Using standard validation
methods spanning SBC, recovery plots, CI inclusion fractions,
posterior z-scores, and posterior contraction, we validate our in-
ference procedure. The amortized nature of estimation enables
straightforward validation of the method for any application
and reduces computational costs when repetitions of estimation
for different subjects, datasets, and so forth, are likely.

Much of this estimation machinery can be hidden from the
typical user who can use the default hyperparameters and sim-
ple to use packages. Nevertheless, a few practical suggestions
include:

–	 Having two to four times more summary statistics than
parameters seems helpful. More summary statistics add
little computational costs but may push models to overfit
uninformative features of training data.

–	 Some parameters are identified with orders of magnitude
less data and training than others. Identifying both pro-
cess and measurement noise, especially the former, could
be complex and require much data. So, one may be com-
fortable halting inference early if the identification of noise
parameters was not of primary concern.

–	 Manual summary statistics are valuable and can speed
up inference notably, especially for noise parameters. We
found the covariance matrix for data residuals (compared
to a de-noised mean tracker, e.g., Savitzky–Golay filter)
against the lagged version of themselves and other data se-
ries as a helpful and generalizable summary statistic.

FIGURE 13    |    Empirical cumulative distribution functions (ECDF) of rank statistics for SEIRb model.

FIGURE 14    |    Recovery and SBC plots for Random Walk from the optimized run.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

21 of 24

–	 Bidirectional (rather than unidirectional) LSTM networks,
by looking backward at data, are better at inferring initial
conditions for stocks.

–	 Batch sizes of 16–64 and a learning rate of 0.001 seemed to
be generally a good choice.

–	 Other hyperparameters may require problem-specific tun-
ing: LSTM units (64 is a good starting point), number of
inference layers (5–8 for simpler to more complex models),
and convolutional layers for a sequential summary net-
work (e.g., 3–4 layers, though their value was less salient).

–	 We found limited impact from normalizing parameters or
log-transforming the data, but they may prove helpful when
parameter ranges and model outputs are more varied.

This paper only provides an entry into the space, and several
important questions remain. First, we do not know whether the
estimated results are “efficient” (offering the tightest possible distri-
bution of posteriors). SBC does not inform this question accurately.
Therefore, testing efficiency on models with available likelihood-
based estimation methods would be a valuable extension.

Scalability is another key question: Would this method work
for typical system dynamics applications? Total computational
costs in our ABI inference examples vary from a few minutes
(for the Random Walk toy model) to a few hours for the SEIRb

example. Better hardware can help. For example, we see 2–4
times savings moving from a desktop without GPUs to a sim-
ilarly priced desktop with GPUs for NN training. Much of the
computation is due to the NN training step: simulation time
for sufficient sample sizes of 104 − 105 takes a few seconds to
complete when parallelized and compiled. For rather complex
system dynamics models, 106 − 107 simulations may be feasi-
ble, even easy, suggesting that the computational bottleneck
currently remains with the NN training side, though memory
constraints can also become problematic with large offline
datasets.

Overall, the current machinery would allow for estimating
typical system dynamics models in an amortized fashion
with around two dozen parameters; for example, see (Radev
et al. 2021). If one foregoes ABI and instead uses sequential NPE
or NRE methods, computational costs could be cut further by an
order of magnitude for estimating a single dataset. Some of those
methods are built into a different package, SBI. Using good man-
ual summary statistics also speeds up inference notably because
they allow the posterior network to be trained from the outset;
designing generic informative summary stats for dynamic mod-
els is promising. Scalability is not just about the number of pa-
rameters but also relates to the (often unknown) shape of the
posterior distribution. Creating a larger number of test models
with different parameter counts, reference modes, and noise

FIGURE 15    |    Recovery and SBC plots for SEIRb from the optimized run.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

22 of 24 System Dynamics Review, 2025

structures and conducting continuous benchmarking research
on that set would inform the scalability problem more precisely.

Another fruitful area is the comparison and expansion of model
appropriateness measures. Prediction quality informs one set
of these tests from simple fit measures (e.g., Root Mean Square
Error [RMSE] and Mean Absolute Percentage Error [MAPE]) to
complexity-adjusted ones (e.g., Akaike and Bayesian Information
Criterion [AIC and BIC]). Out-of-sample predictive power (e.g.,
K-fold validation) is also used extensively. Another promising
direction is the application of summary statistics, simulated
vs. empirical, to assess the quality of the model in light of the
data at hand (Gretton et al. 2012; Schmitt et al. 2022). Such tests
inform a model's external validity (how close the model struc-
ture is to the true data generating process) and whether it has
room for improvement. That would be a key additional input for
an iterative model enhancement process. Nevertheless, even if
we get an aggregate signal for weak external validity, the task
of identifying the specific structural weaknesses in the model
remains complex and should rely on engaging evidence from
prior research, various stakeholders, and subject matter experts.
Bridging the quantitative model testing approaches and these
qualitative sources remains a key area for future contributions.

Another area for further exploration is the better integration
of hierarchical models with the ABI machinery. For example,
in modeling COVID-19, models for different countries may
include the same “structure” but parameters that vary across
countries and are potentially interrelated, creating a “hierar-
chical” architecture for model parameters. While ABI machin-
ery already includes hierarchical estimation, this machinery
may not be efficient if “driving data” (e.g., data inputs into the
model) are different across different units. Efficient incorpora-
tion of driving data into inference so that inference costs scale
sub-linearly with the number of units would be a valuable
contribution.

Finally, transparency is critical for trust and adoption. It re-
quires documentation of the modeling and estimation process,
the assumptions made, the choice of neural network architec-
tures, and the rationale for selecting specific hyperparameters.
Sharing fully documented code and providing tested packages
that bridge evolving estimation tools with system dynamics sim-
ulation software would prove valuable, and we hope this paper
takes a first step in that direction.

More broadly, the field is rapidly evolving, with new methods
and improvements emerging regularly. Packages that implement
state-of-the-art methods (e.g., BayesFlow and Simulated-Based
Inference, SBI) are critical for disseminating best practices, and
bridging user communities with the evolving tools requires con-
tinued tool and bridge building. Our work takes a small step in
that direction, but much more research is needed. The emerg-
ing tools can already solve some of the thorny estimation chal-
lenges the system dynamics community has dealt with (or was
forced to side-step), and future breakthroughs in this space may
ultimately ‘solve’ the estimation problem. This field thus offers
exciting opportunities for researchers dedicated to refining and
advancing the integration of quantitative data with nuanced and
rich models system dynamics is best known for.

Acknowledgments

We thank ISDC 2024 conference reviewers for thoughtful feedback. We
appreciate the computational resources provided by Università della
Svizzera italiana for conducting some of the analyses in this paper.

Endnotes

	1	A notable exception to this statement is the use of Variational Inference
(Blei, Kucukelbir, and McAuliffe 2017) methods which scale well but
approximate the posterior distribution using a proxy distribution (e.g.,
Gaussian) and thus may not be appropriate for more complex posterior
shapes.

	2	Perceived risk is regulated by the measured (rather than true) deaths.
Thus, it is technically more precise to consider SDD to be impacted by
a process noise because it feeds back into model dynamics, yet we use
the more intuitive “measurement” label.

References

Andrade, J., and J. Duggan. 2021. “A Bayesian Approach to Calibrate
System Dynamics Models Using Hamiltonian Monte Carlo.” System
Dynamics Review 37, no. 4: 283–309. https://​doi.​org/​10.​1002/​sdr.​1693.

Ardizzone, L., J. Kruse, C. Lüth, N. Bracher, C. Rother, and U. Köthe.
2021. “Conditional Invertible Neural Networks for Diverse Image-to-
Image Translation.” In Pattern Recognition, edited by Z. Akata, A. Geiger,
and T. Sattler, 373–387. Cham: Springer International Publishing.

Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp. 2002.
“A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian
Bayesian Tracking.” IEEE Transactions on Signal Processing 50, no. 2:
174–188. https://​doi.​org/​10.​1109/​78.​978374.

Blei, D. M., A. Kucukelbir, and J. D. McAuliffe. 2017. “Variational
Inference: A Review for Statisticians.” Journal of the American
Statistical Association 112, no. 518: 859–877. https://​doi.​org/​10.​1080/​
01621​459.​2017.​1285773.

Blei, D. M., and P. Smyth. 2017. “Science and Data Science.” Proceedings
of the National Academy of Sciences 114, no. 33: 8689–8692. https://​doi.​
org/​10.​1073/​pnas.​17020​76114​.

Box, G. E., and G. M. Jenkins. 1976. Time Series Analysis: Forecasting
and Control (Rev. ed.). San Francisco: Holden-Day.

Box, G. E. P., W. G. Hunter, and J. S. Hunter. 1978. Statistics for
Experimenters: An Introduction to Design, Data Analysis, and Model
Building. New York: Wiley.

Casella, G., and R. L. Berger. 1990. Statistical Inference. Belmont, CA:
Duxbury Press.

Cranmer, K., J. Brehmer, and G. Louppe. 2020. “The Frontier of Simulation-
Based Inference.” Proceedings of the National Academy of Sciences 117, no.
48: 30055–30062. https://​doi.​org/​10.​1073/​pnas.​19127​89117​.

De Melo, C. M., A. Torralba, L. Guibas, J. DiCarlo, R. Chellappa, and J.
Hodgins. 2022. “Next-Generation Deep Learning Based on Simulators
and Synthetic Data.” Trends in Cognitive Sciences 26, no. 2: 174–187.
https://​doi.​org/​10.​1016/j.​tics.​2021.​11.​008.

Drovandi, C., and D. T. Frazier. 2022. “A Comparison of Likelihood-
Free Methods With and Without Summary Statistics.” Statistics and
Computing 32, no. 3: 42. https://​doi.​org/​10.​1007/​s1122​2-​022-​10092​-​4.

Durkan, C., A. Bekasov, I. Murray, and G. Papamakarios. 2019. “Neural
Spline Flows.” In Advances in Neural Information Processing Systems,
edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, Vol. 32. Vancouver, Canada: Curran Associates,
Inc. https://​proce​edings.​neuri​ps.​cc/​paper_​files/​​paper/​​2019/​file/​7ac71​
d433f​28203​4e088​47324​4df8c​02-​Paper.​pdf.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/sdr.1693
https://doi.org/10.1109/78.978374
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1073/pnas.1702076114
https://doi.org/10.1073/pnas.1702076114
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1016/j.tics.2021.11.008
https://doi.org/10.1007/s11222-022-10092-4
https://proceedings.neurips.cc/paper_files/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/7ac71d433f282034e088473244df8c02-Paper.pdf

23 of 24

Eberlein, R. 2015. “Working With Noisy Data: Kalman Filtering
and State Resetting.” In Analytical Methods for Dynamic Modelers.
Cambridge, MA: MIT Press.

Forrester, J. W. 1961. Industrial Dynamics. Cambridge, MA: MIT Press.

Forrester, J. W. 1987. “Lessons From System Dynamics Modeling.”
System Dynamics Review 3, no. 2: 136–149. https://​doi.​org/​10.​1002/​sdr.​
42600​30205​.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 1995. Bayesian
Data Analysis. New York: Chapman and Hall/CRC.

Gelman, A., A. Vehtari, D. Simpson, et al. 2020. “Bayesian Workflow.”

Gershman, S., and N. Goodman. 2014. “Amortized Inference in
Probabilistic Reasoning.” In Proceedings of the Annual Meeting of the
Cognitive Science Society.

Gill, J. 2002. Bayesian Methods: A Social and Behavioral Sciences
Approach. Boca Raton, FL: Chapman and Hall/CRC.

Greenberg, D., M. Nonnenmacher, and J. Macke. 2019. “Automatic Posterior
Transformation for Likelihood-Free Inference.” In Proceedings of the 36th
International Conference on Machine Learning, 2404–2414: PMLR.

Gretton, A., K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola.
2012. “A Kernel Two-Sample Test.” Journal of Machine Learning
Research 13, no. 1: 723–773.

Hansen, L. P. 1982. “Large Sample Properties of Generalized Method of
Moments Estimators.” Econometrica 50, no. 4: 1029–1054. https://​doi.​
org/​10.​2307/​1912775.

Hermans, J., V. Begy, and G. Louppe. 2020. “Likelihood-Free MCMC
With Amortized Approximate Ratio Estimators.” In Proceedings of the
37th International Conference on Machine Learning, 4239–4248: PMLR.

Homer, J. B. 1996. “Why We Iterate: Scientific Modeling in Theory and
Practice.” System Dynamics Review 12, no. 1: 1–19. https://​doi.​org/​10.​
1002/​(SICI)​1099-​1727(199621)​12:​1<​1::​AID-​SDR93​>​3.0.​CO;​2-​P.

Hosseinichimeh, N., H. Rahmandad, M. S. Jalali, and A. K. Wittenborn.
2016. “Estimating the Parameters of System Dynamics Models Using
Indirect Inference.” System Dynamics Review 32, no. 2: 156–180. https://​
doi.​org/​10.​1002/​sdr.​1558.

Jalali, M., H. Rahmandad, and H. Ghoddusi. 2015. “Using the Method
of Simulated Moments for System Identification.” In Analytical Methods
for Dynamic Modelers, 39–69. Cambridge, MA: MIT Press.

Kennedy, P. 2008. A Guide to Econometrics. Malden, MA: Blackwell
Pub.

Kingma, D. P., and P. Dhariwal. 2018. “Glow: Generative Flow With
Invertible 1 × 1 Convolutions.” In Advances in Neural Information
Processing Systems, edited by S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett, Vol. 31. Montréal, Canada:
Curran Associates, Inc. https://​proce​edings.​neuri​ps.​cc/​paper_​files/​​
paper/​​2018/​file/​d139d​b6a23​6200b​21cc7​f7529​79132​d0-​Paper.​pdf.

Kingma, D. P., and M. Welling. 2022. “Auto-Encoding Variational Bayes.”

Li, T., H. Rahmandad, and J. Sterman. 2022. “Improving Parameter
Estimation of Epidemic Models: Likelihood Functions and Kalman
Filtering.”

Lueckmann, J.-M., J. Boelts, D. Greenberg, P. Goncalves, and J. Macke.
2021. “Benchmarking Simulation-Based Inference.” In Proceedings of
the 24th International Conference on Artificial Intelligence and Statistics,
343–351: PMLR.

Lueckmann, J.-M., P. J. Goncalves, G. Bassetto, K. Öcal, M. Nonnenmacher,
and J. H. Macke. 2017. “Flexible Statistical Inference for Mechanistic
Models of Neural Dynamics.” In Advances in Neural Information
Processing Systems, edited by I. Guyon, U. V. Luxburg, S. Bengio, H.
Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Long Beach, CA:
Curran Associates, Inc. https://​proce​edings.​neuri​ps.​cc/​paper_​files/​​
paper/​​2017/​file/​addfa​9b7e2​34254​d26e9​c7f2a​f1005​cb-​Paper.​pdf.

Lyneis, J. M., and A. L. Pugh. 1996. “Automated vs. Hand Calibration
of System Dynamics Models: An Experiment With a Simple Project
Model.” In Proceedings of the 1996 International System Dynamics
Conference. MA: System Dynamics Society Cambridge.

Manski, C. F. 2013. “Public Policy in an Uncertain World: Analysis and
Decisions.” In Public Policy in an Uncertain World. Cambridge, MA:
Harvard University Press.

Marin, J.-M., P. Pudlo, C. P. Robert, and R. J. Ryder. 2012. “Approximate
Bayesian Computational Methods.” Statistics and Computing 22, no. 6:
1167–1180. https://​doi.​org/​10.​1007/​s1122​2-​011-​9288-​2.

Nikolenko, S. I. 2021. Synthetic Data for Deep Learning. Cham: Springer
International Publishing.

Oliva, R. 2003. “Model Calibration as a Testing Strategy for System
Dynamics Models.” European Journal of Operational Research 151, no.
3: 552–568. https://​doi.​org/​10.​1016/​S0377​-​2217(02)​00622​-​7.

Papamakarios, G., E. Nalisnick, D. J. Rezende, S. Mohamed, and
B. Lakshminarayanan. 2021. “Normalizing Flows for Probabilistic
Modeling and Inference.” Journal of Machine Learning Research 22, no.
1: 57:2617–57:2680.

Popper, K. 1934. The Logic of Scientific Discovery. New York: Routledge.

Radev, S. T., F. Graw, S. Chen, et al. 2021. “OutbreakFlow: Model-Based
Bayesian Inference of Disease Outbreak Dynamics With Invertible
Neural Networks and Its Application to the COVID-19 Pandemics in
Germany.” PLoS Computational Biology 17, no. 10: e1009472. https://​doi.​
org/​10.​1371/​journ​al.​pcbi.​1009472.

Radev, S. T., U. K. Mertens, A. Voss, L. Ardizzone, and U. Köthe. 2022.
“BayesFlow: Learning Complex Stochastic Models With Invertible
Neural Networks.” IEEE Transactions on Neural Networks and Learning
Systems 33, no. 4: 1452–1466. https://​doi.​org/​10.​1109/​TNNLS.​2020.​
3042395.

Radev, S. T., M. Schmitt, L. Schumacher, et al. 2023. “BayesFlow:
Amortized Bayesian Workflows With Neural Networks.”

Rahmandad, H., T. Y. Lim, and J. Sterman. 2021. “Behavioral Dynamics
of COVID-19: Estimating Underreporting, Multiple Waves, and
Adherence Fatigue Across 92 Nations.” System Dynamics Review 37, no.
1: 5–31. https://​doi.​org/​10.​1002/​sdr.​1673.

Rahmandad, H., and J. Sterman. 2022. “Quantifying the COVID-19
Endgame: Is a New Normal Within Reach?” System Dynamics Review
38, no. 4: 329–353. https://​doi.​org/​10.​1002/​sdr.​1715.

Rahmandad, H., R. Xu, and N. Ghaffarzadegan. 2022a. “A Missing
Behavioural Feedback in COVID-19 Models Is the Key to Several
Puzzles.” BMJ Global Health 7, no. 10: e010463. https://​doi.​org/​10.​1136/​
bmjgh​-​2022-​010463.

Rahmandad, H., R. Xu, and N. Ghaffarzadegan. 2022b. “Enhancing
Long-Term Forecasting: Learning From COVID-19 Models.” PLoS
Computational Biology 18, no. 5: e1010100. https://​doi.​org/​10.​1371/​journ​
al.​pcbi.​1010100.

Raissi, M., P. Perdikaris, and G. E. Karniadakis. 2019. “Physics-
Informed Neural Networks: A Deep Learning Framework for Solving
Forward and Inverse Problems Involving Nonlinear Partial Differential
Equations.” Journal of Computational Physics 378: 686–707. https://​doi.​
org/​10.​1016/j.​jcp.​2018.​10.​045.

Säilynoja, T., P.-C. Bürkner, and A. Vehtari. 2022. “Graphical Test for
Discrete Uniformity and Its Applications in Goodness-of-Fit Evaluation
and Multiple Sample Comparison.” Statistics and Computing 32, no. 2:
32. https://​doi.​org/​10.​1007/​s1122​2-​022-​10090​-​6.

Schmitt, M., P.-C. Bürkner, U. Köthe, and S. T. Radev. 2022. “Detecting
Model Misspecification in Amortized Bayesian Inference With Neural
Networks.”

Sterman, J. 2000. Business Dynamics: Systems Thinking and Modeling
for a Complex World. Boston: McGraw-Hill Education.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/sdr.4260030205
https://doi.org/10.1002/sdr.4260030205
https://doi.org/10.2307/1912775
https://doi.org/10.2307/1912775
https://doi.org/10.1002/(SICI)1099-1727(199621)12:1%3C1::AID-SDR93%3E3.0.CO;2-P
https://doi.org/10.1002/(SICI)1099-1727(199621)12:1%3C1::AID-SDR93%3E3.0.CO;2-P
https://doi.org/10.1002/sdr.1558
https://doi.org/10.1002/sdr.1558
https://proceedings.neurips.cc/paper_files/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/addfa9b7e234254d26e9c7f2af1005cb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/addfa9b7e234254d26e9c7f2af1005cb-Paper.pdf
https://doi.org/10.1007/s11222-011-9288-2
https://doi.org/10.1016/S0377-2217(02)00622-7
https://doi.org/10.1371/journal.pcbi.1009472
https://doi.org/10.1371/journal.pcbi.1009472
https://doi.org/10.1109/TNNLS.2020.3042395
https://doi.org/10.1109/TNNLS.2020.3042395
https://doi.org/10.1002/sdr.1673
https://doi.org/10.1002/sdr.1715
https://doi.org/10.1136/bmjgh-2022-010463
https://doi.org/10.1136/bmjgh-2022-010463
https://doi.org/10.1371/journal.pcbi.1010100
https://doi.org/10.1371/journal.pcbi.1010100
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1007/s11222-022-10090-6

24 of 24 System Dynamics Review, 2025

Sterman, J. 2018. “System Dynamics at Sixty: The Path Forward.” System
Dynamics Review 34, no. 1–2: 5–47. https://​doi.​org/​10.​1002/​sdr.​1601.

Tabak, E. G., and C. V. Turner. 2013. “A Family of Nonparametric
Density Estimation Algorithms.” Communications on Pure and
Applied Mathematics 66, no. 2: 145–164. https://​doi.​org/​10.​1002/​cpa.​
21423​.

Talts, S., M. Betancourt, D. Simpson, A. Vehtari, and A. Gelman. 2020.
“Validating Bayesian Inference Algorithms With Simulation-Based
Calibration.”

Tran, D., M. Dusenberry, M. van der Wilk, and D. Hafner. 2019.
“Bayesian Layers: A Module for Neural Network Uncertainty.” In
Advances in Neural Information Processing Systems. Vancouver,
Canada: Curran Associates, Inc.

Varian, H. R. 2014. “Big Data: New Tricks for Econometrics.” Journal of
Economic Perspectives 28, no. 2: 3–28. https://​doi.​org/​10.​1257/​jep.​28.2.​3.

Vehtari, A., A. Gelman, and J. Gabry. 2017. “Practical Bayesian Model
Evaluation Using Leave-One-Out Cross-Validation and WAIC.”
Statistics and Computing 27, no. 5: 1413–1432. https://​doi.​org/​10.​1007/​
s1122​2-​016-​9696-​4.

Supporting Information

Additional supporting information can be found online in the
Supporting Information section.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/sdr.1601
https://doi.org/10.1002/cpa.21423
https://doi.org/10.1002/cpa.21423
https://doi.org/10.1257/jep.28.2.3
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4

	Incorporating Deep Learning Into System Dynamics: Amortized Bayesian Inference for Scalable Likelihood-Free Parameter Estimation
	ABSTRACT
	1   |   Introduction
	2   |   Neural Networks for Estimating Model Parameters
	3   |   Study Design
	4   |   Methods
	4.1   |   Inference Steps
	4.1.1   |   Defining the Generative Engine
	4.1.2   |   Defining Summary and Inference Neural Networks
	4.1.3   |   Specifying the Training Schedule
	4.1.4   |   Implementation Notes

	4.2   |   Inference Validation and Assessment
	4.2.1   |   The Data and Computational Requirements for Estimating the Model
	4.2.2   |   Quality of Inference

	4.3   |   Model Assessment
	4.4   |   Model 1: Random Walk
	4.5   |   Model 2: SEIRb

	5   |   Results
	5.1   |   Exploring Inference Hyperparameters
	5.2   |   Random Walk Inference Results
	5.3   |   SEIRb Inference Results
	5.4   |   Impact of Training Budget

	6   |   Discussion
	Acknowledgments
	Endnotes
	References

