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ABSTRACT
Estimating parameters and their credible intervals for complex system dynamics models is challenging but critical to continu-
ous model improvement and reliable communication with an increasing fraction of audiences. The purpose of this study is to 
integrate Amortized Bayesian Inference (ABI) methods with system dynamics. Utilizing Neural Posterior Estimation (NPE), we 
train neural networks using synthetic data (pairs of ground truth parameters and outcome time series) to estimate parameters of 
system dynamics models. We apply this method to two example models: a simple Random Walk model and a moderately complex 
SEIRb model. We show that the trained neural networks can output the posterior for parameters instantly given new unseen 
time series data. Our analysis highlights the potential of ABI to facilitate a principled, scalable, and likelihood-free inference 
workflow that enhance the integration of models of complex systems with data. Accompanying code streamlines application to 
diverse system dynamics models.

1   |   Introduction

System dynamics modeling draws on various data sources, in-
cluding qualitative, archival, and numerical (Forrester 1987) to 
build models of important problems. Without empirical support, 
theoretical claims or policy recommendations can be misguided 
(Sterman 2018). A continuous conversation between models and 
data helps develop better theory and policy (Popper 1934; Box, 
Hunter, and Hunter  1978; Homer  1996) and ensures models' 
relevance.

For example, Rahmandad and colleagues developed system 
dynamics models to understand heterogeneity in COVID-19 
deaths, predict future trajectories, and assess vaccine bene-
fits (Rahmandad, Lim, and Sterman  2021; Rahmandad and 
Sterman  2022; Rahmandad, Xu, and Ghaffarzadegan  2022a). 
The model(s) went through over 80 versions. Each iteration com-
pared model outputs with empirical data (deaths, cases, hospi-
talizations, excess mortality) and estimated parameters against 
the literature (e.g., vaccine effectiveness, immunity loss time, 
and infection fatality rates). Discrepancies motivated searches 

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the 

original work is properly cited and is not used for commercial purposes.

© 2025 The Author(s). System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.

Accepted by Andreas Größler 

https://doi.org/10.1002/sdr.1798
https://doi.org/10.1002/sdr.1798
mailto:
https://orcid.org/0000-0002-2784-9042
https://orcid.org/0000-0002-7077-3442
https://orcid.org/0000-0001-6769-2732
mailto:hazhir@mit.edu
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsdr.1798&domain=pdf&date_stamp=2025-01-21


2 of 24 System Dynamics Review, 2025

for underlying causes and mechanisms, which then informed 
model updates from behavioral response feedback and exploring 
adherence fatigue to loss of immunity, vaccination dynamics, 
separation of populations based on prior immunity status, and 
many others. Absent this iterative process, earlier models would 
have produced different, likely inferior, and even misleading 
conclusions and recommendations. Therefore, iterative refine-
ment of models is vital for ensuring the reliability and relevance 
of model-driven insights in addressing real-world challenges.

Enhancing models iteratively involves three key elements: feed-
back to refine model structures, parameter identification, and 
a signal to know when the model is good enough for the pur-
pose at hand. Historically, iterative modeling relied on compar-
ing models to qualitative and archival data (Forrester  1987). 
While revealing structural shortcomings, these methods do not 
assess parameter accuracy or overall model quality. Even with 
numerical data, traditional methods focused on hand calibra-
tion of point estimates and simple statistical tests (Lyneis and 
Pugh  1996; Sterman  2000). Automated calibration methods 
have since emerged, simplifying the search for optimal param-
eters (Oliva 2003).

Recent work aims not only to find point estimates but also to 
quantify uncertainty in model parameters (Jalali, Rahmandad, 
and Ghoddusi  2015; Andrade and Duggan  2021). Uncertainty 
quantification is critical because it allows researchers to de-
termine if qualitative conclusions are statistically significant 
(Gelman et al. 1995; Kennedy 2008). It is also essential for pro-
jecting future trajectories and designing policies (Manski 2013), 
for example, the decision to purchase insurance is typically based 
on low probabilities of adverse events in the tail of outcomes 
distributions, not the most likely scenarios. Thus, quantifying 
uncertainty not only enhances model reliability and theoretical 
conclusions but also supports better decision-making.

The explosion in the availability of numerical data (Varian 2014; 
Blei and Smyth 2017) has made formal parameter estimation and 
uncertainty quantification widely feasible and expected across 
many disciplines. Classical methods for uncertainty quantifica-
tion often rely on explicitly defining the ‘likelihood’ of some set 
of model parameters given an observed dataset. When feasible, 
these methods provide important advantages in simplicity, com-
putational costs, transparency, and efficiency (Gill 2002; Casella 
and Berger 1990). The parameter combination that maximizes 
the likelihood of generating the observed dataset becomes the 
maximum likelihood estimate, and the curvature of the likeli-
hood function around the maximum likelihood point informs 
uncertainty in estimates. Whether that curvature is approxi-
mated using the Hessian matrix (of likelihood with respect to 
model parameters) or empirically sampled using Markov Chain 
Monte Carlo (MCMC) and related methods, one can quan-
tify uncertainty in parameters when likelihoods are available 
(Gelman et al. 1995).

Unfortunately, likelihoods are not available for most system 
dynamics models due to nonlinearity, process noise, and high-
dimensional parameter spaces. Absent likelihoods, some may 
opt for simplifying the model to enable explicit likelihood cal-
culations (Box and Jenkins  1976), trading off model quality 
for tractability. Another approach is to use approximations 

of the likelihood function that may be inaccurate but flexible 
enough to quantify parameter uncertainty (Li, Rahmandad, 
and Sterman  2022). Such approximations, when effective, are 
appealing but should be designed and validated for each case. 
A third approach is to use more complex state resetting and fil-
tering methods (e.g., Kalman or particle filter) to enable better 
estimates of true likelihood, albeit at increased computational 
costs (Arulampalam et al. 2002; Eberlein 2015).

However, methods exists that do not require likelihoods, in-
cluding simulation-based inference approaches, spanning 
method of (simulated) moments, variational inference, ap-
proximate Bayesian calculation, and related approaches 
(Hansen  1982; Marin et  al.  2012; Jalali, Rahmandad, and 
Ghoddusi  2015; Hosseinichimeh et  al.  2016; Blei, Kucukelbir, 
and McAuliffe 2017). These methods often (but not always, see 
Drovandi and Frazier  2022) calculate some informative sum-
mary statistics of the data and search over model parameters for 
values that offer summary statistics matching those in the data. 
These methods do not usually have the efficiency of likelihood-
based methods (i.e., they lose information in the estimation 
process and thus estimate wider credible intervals). Part of the 
inefficiency is due to the ad-hoc nature of selecting the summary 
statistics. These methods are also usually computationally less 
efficient. These limitations add up, limiting many likelihood-
free methods to simpler models (e.g., a dozen unknown parame-
ters on models that simulate in a fraction of a second) and good 
summary statistics can be specified manually (but see varia-
tional inference Blei, Kucukelbir, and McAuliffe 2017).1

In short, parameter estimation and uncertainty quantification 
for system dynamics models are increasingly important and can 
benefit from advances in other fields. A robust solution enables 
the estimation of both the model parameters and their uncer-
tainty and validation of our estimation framework. Calibration 
methods most common in system dynamics literature offer point 
estimates for model parameters but fall short on other criteria 
for a principled inference workflow. This paper offers a bridge 
to rapid advances in estimation methods in neighboring fields 
(Vehtari, Gelman, and Gabry  2017), including those building 
on machine learning methods that leverage neural networks to 
provide more comprehensive solutions to estimation problems.

In the next section, we provide a high-level overview of this 
evolving methodological toolbox. We then apply one promising 
method from this set to two simple system dynamics models 
to assess its viability and promise. We demonstrate how a SD 
model can generate the synthetic data needed to train neural 
networks that enable Bayesian inference, and how new syn-
thetic datasets (i.e., data with known true parameter values) can 
be used for validation of the inference process. Two case studies 
demonstrate the practical implications and benefits of integrat-
ing machine learning techniques into system dynamics.

2   |   Neural Networks for Estimating Model 
Parameters

Recent advances in machine learning methods leveraging 
neural networks (NNs) are quickly changing the landscape 
for parameter estimation methods (Raissi, Perdikaris, and 
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Karniadakis  2019; Cranmer, Brehmer, and Louppe  2020). 
Recent work shows NNs can learn the posterior distribution 
(i.e., the probability distribution of model parameters condi-
tioned on observed data) of parameters without requiring an 
explicit likelihood function (Tran et  al.  2019; Papamakarios 
et al. 2021; Kingma and Welling 2022). These methods can over-
come challenges due to intractable likelihood functions and may 
even reduce the computational costs associated with iterative 
simulation and optimization processes traditionally required for 
parameter estimation.

The details of implementing NNs vary depending on the 
specific method used and are reviewed elsewhere (e.g., 
see Cranmer, Brehmer, and Louppe  2020; Papamakarios 
et al. 2021). The core problem is seen as identifying the (poste-
rior) distribution of the (vectors of) model parameters (𝜃) given 
an observed dataset (𝑥). Two of the most common categories 
of these methods include Neural Ratio Estimation (NRE) 
(Durkan et  al.  2019; Hermans, Begy, and Louppe  2020) and 
Neural Posterior Estimation (NPE) (Lueckmann et  al.  2017; 
Greenberg, Nonnenmacher, and Macke 2019) methods, while 
other approaches (such as synthetic likelihood estimation) are 
also available and rapidly evolving.

In NRE methods, a neural network receives combinations of 𝜃 
and 𝑥 as input and is trained to tell apart if the 𝑥 has come from 
the 𝜃 that generated it (correct matching of parameter and data) 
or not (e.g., by scrambling which 𝜃 generated 𝑥, and showing 
incorrect matches to NN). Thus, posterior estimation turns into 

a classification problem in which NNs excel. Once the NN has 
learned to make this classification, it has implicitly learned the 
posterior: Given a data set 𝑥, what is the likelihood of different 
parameter combinations having generated that dataset? With 
this information embedded in the NN, one can rapidly sample 
from the posterior using methods like MCMC without requir-
ing sampling from the (computationally expensive) simula-
tion model.

The NPE methods attempt to learn the full posterior distribu-
tion directly. A common approach is to train a reversible NN 
(one where the NN's transformation function can be reversed 
analytically, e.g., Normalizing Flows (Tabak and Turner 2013)) 
so that inputting both 𝑥 and 𝜃 (that generated 𝑥) into the NN, 
the network (on its “forward” path) learns to output a simple 
distribution (e.g., a standard multivariate Gaussian) of the same 
dimensionality as 𝜃. This “training phase” process leverages the 
inherent flexibility of neural networks to approximate complex, 
non-linear mappings between inputs and outputs. In the infer-
ence phase, by inverting that network analytically and condi-
tioning it on an observed dataset 𝑥, one can give it samples of 
standard multivariate Gaussian distribution and produce, at the 
end of the “inverse” path, samples from the posterior of the pa-
rameter distribution consistent with the dataset 𝑥. The task of 
training the network is pursued using an error function mini-
mizing the gap between the outputs of the forward network and 
a standard multivariate Gaussian distribution, typically using 
variants of Kullback-Leibler divergence between the two dis-
tributions. Figure 1 illustrates such a workflow. An important 

FIGURE 1    |    Summary of the training and inference phases. During training samples of θ from prior distribution are fed into the system dynam-
ics model to generate synthetic (simulated) data. Each synthetic dataset is turned into a summary vector using a summary neural network h and 
potentially augmented by hand-crafted summary statistics. The summary vector and original parameters are then fed into the inverse inference 
network f and an optimizer estimates the weights of h and f so that the output of inverse inference network converges to a simple base distribution 
(e.g., multi-variate Gaussian with dimensionality of θ). In the inference phase, an unseen (e.g., real-world) dataset is used to generate the summary 
vector leveraging estimated h. The inference network then uses the summary vector and samples from the base distribution to generate the posterior 
distribution. The figure is borrowed from Radev et al. (2023) and revised to match the specifics of this article.
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feature of this method is the ability to generate samples from the 
posterior distribution at almost no cost: one simply feeds into the 
inverse network (analytically derived from the estimated for-
ward NN) a sample from the multivariate Gaussian distribution 
and receives on the other end a sample of the posterior, bypass-
ing the potentially slow and expensive MCMC step.

Both NRE and NPE methods offer two important features. First, 
they could include an NN that transforms simulation data into 
a set of summary statistics before feeding that to the main infer-
ence network. This preprocessing step is crucial for condensing 
the data into a manageable and meaningful form that captures 
the essence of the dataset. The user should decide on the dimen-
sionality of summary statistics (which should be more than the 
number of estimated parameters, often by a factor of 2-4, to pro-
vide sufficient information about the data features). The sum-
mary network will then be trained alongside the inference one 
to generate informative summary statistics without the need for 
relying solely on hand-made statistics, making the method fully 
automated. Second, by inputting different 𝜃 and 𝑥 values, the 
network learns not only the posterior for a given 𝑥 but also the 
posterior for any dataset that could come from the range of 𝜃 for 
parameters (priors in a Bayesian setup) that it has been trained 
on. This feature leads to “amortized” Bayesian inference (ABI) 
of models: we could fully solve the inference problem for a whole 
family of models (same structure, different 𝜃 values coming from 
a prior distribution) rather than a single dataset. Amortization 
refers to the efficient reuse of computational resources, spread-
ing out the initial computational cost of solving the inference 
problem over multiple model instances. It overcomes the scal-
ability challenges often faced in Bayesian inference, offering 
a practical solution for complex modeling scenarios when the 
same model will be reused (for different instances, subjects, 
etc.). Once such amortized estimation is complete, the parame-
ter posteriors for any dataset can be obtained instantly and at lit-
tle cost. This could be a huge benefit when the estimation work 
is not one-off. In such cases, the amortization would save in the 
order of the number of required re-calibrations.

Training an NN that learns the posteriors for all different data-
sets (generated from a prior distribution) could be computation-
ally expensive, and therefore, “sequential” methods for NRE and 
NPE have been developed where the sampling distribution from 
possible 𝜃 is narrowed down adaptively: as we learn the likely 
(posterior) distribution of parameters given the target dataset 𝑥, 
we focus on learning the posterior using samples from this more 
limited parameter space. This adaptive approach optimizes the 
learning process by concentrating computational efforts on the 
most relevant parts of the parameter space. The final network 
would then be primarily applicable to the target dataset that 
could be estimated more efficiently (Lueckmann et  al.  2021). 
While ABI may seem dauntingly complex, the task has proved 
easier in practice than the combinatorial explosion of the input 
data space may suggest. For example, the initial training time 
may increase by one to two orders of magnitude compared to 
the relevant sequential method, but future inference will be al-
most instantaneous (Radev et al.  2022). This efficiency comes 
from the fact that the NN learns well, and becomes more robust, 
from being trained on a larger set of input parameters and out-
puts, and thus can better identify viable vs. unlikely parameter 
combinations.

Amortizing inference offers two notable benefits. First, once 
trained, the parameter posteriors for any dataset can be obtained 
instantly and at little cost. The savings would be great when the 
estimation work is not one-off; For example, if one needs to es-
timate a model for different experimental subjects who have 
different data series using the same underlying model. Second, 
amortization enables methods for assessing the reliability of 
inference (Gershman and Goodman 2014; Gelman et al. 2020). 
These methods require going through the inference process 
multiple times for different datasets. For example, consider the 
credible intervals (CIs) generated for one of the model parame-
ters. How do we know if those CIs are reliable? One approach 
is to generate many synthetic datasets from the model using 
(known) parameters that are close to those estimated for our 
empirical case, then estimate the CIs for these new datasets, and 
finally assess if the fraction of ground truth parameters that fall 
within corresponding CIs is consistent with theoretical values. 
For example, we expect about 90% of ground truth parameters 
to fall within their corresponding 90% CI. To test this expecta-
tion, we need many separate estimations, which are fast with 
ABI and costly without.

Other numerical validation methods for inference similarly ben-
efit from ABI. For example, Simulation-Based Calibration (SBC) 
(Talts et al. 2020) relies on a simple theorem: If we sample from 
a prior distribution for 𝜃, generate a dataset 𝑥 for each 𝜃, and then 
sample from the posterior of 𝜃 given the realized 𝑥, we will get 
back to the prior distribution of 𝜃. Comparing the initial prior 
and the resulting distribution (which should be the same as the 
prior) will inform whether the estimated posterior is correct, or 
the inference is problematic. SBC starts with many samples from 
𝜃 (computationally trivial), generates an instance of 𝑥 for each 
𝜃 (a simulation; computationally cheap), then samples from the 
posterior of 𝜃 given 𝑥 (computationally cheap with ABI, but very 
expensive with non-amortized methods). Thus, absent ABI, SBC 
and many other empirical methods for validating inference are 
too expensive for all but the simplest models.

Overall, ABI methods have promising features. They enable 
inference with only a simulation model and absent likelihoods, 
a situation common to system dynamics modeling. Moreover, 
whereas non- amortized methods require a separate estimation 
for each new dataset, with ABIs a single run through the train-
ing phase enables instant estimation and generation of samples 
from parameter posteriors for a large number of datasets. Those 
dataset may come from different subjects in experiments, differ-
ent firms in a dataset, and so on. This opens up the path to using 
dynamic models for populations of units (people, firms, coun-
tries, etc.) more efficiently. They also provide methods, such as 
SBC, for validating the inference framework. Are these methods 
able to tackle typical estimation challenges in system dynamics 
research and practice? This is the question we address in the 
current paper.

3   |   Study Design

In this study, we focus on assessing the applicability of neural 
estimation methods to system dynamics models. Reviewing 
prior literature, we focus on an ABI method from the NPE cat-
egory, which offers a state-of-the-art performance in this space 
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(Cranmer, Brehmer, and Louppe  2020) with a user-friendly 
Python package, BayesFlow (Radev et al. 2022). We study via-
bility (could this method work at all for system dynamics mod-
els?), scalability (how large a model/parameter space is feasible 
to tackle?), and ease of use (could the methods be packaged so 
that a typical user can benefit from them with basic program-
ming skills?).

Given limited space, we focus on two models, Random Walk 
and SEIRb. The first is very simple, with a first-order autocor-
related noise structure with a drift and measurement error. 
This model enables the systematic identification of issues re-
lated to the impact of process and measurement noise. The 
second model is the classical SEIR plus a feedback loop for 
the impact of recent deaths on risk perception and, thus, con-
tact, following Rahmandad, Xu, and Ghaffarzadegan (2022b). 
While still simple, with 12 parameters and reference modes 
spanning exponential growth, overshoot and collapse, and 
overshoot and oscillation, SEIRb offers a more challenging 
estimation task.

Traditional estimation methods focus on minimizing the gap 
between simulated model outputs and empirical data by chang-
ing model parameters. Deep learning's application to estimation 
takes a somewhat different route: it focuses on learning the pat-
terns in data to map how parameter inputs relate to model out-
puts for a wider range of input-output combinations. In system 
dynamics, typical inputs are the model parameters, and outputs 
are often simulated time series for a subset of model variables. 
Once a neural network has learned the input-output mapping, it 
can take a set of outputs and infer the parameters (inverse prob-
lem) responsible for generating those outputs. Therefore, a neu-
ral network can be trained by samples of parameter inputs and 
simulated model outputs, before it needs to utilize the empirical 
dataset(s) at hand. In short, synthetic data (samples of parame-
ters and simulation outputs) are all that is needed for training 
the inference neural networks, with the actual inference step for 
an empirical dataset becoming trivially easy: you provide the in-
ference network with your dataset, and it outputs the posterior 
for model parameters.

Synthetic data plays another important role in validation of 
inference methods (Nikolenko  2021; De Melo et  al.  2022). 
Specifically, for empirical data, we do not know the “true” pa-
rameter values that generated the data. Therefore, we have no 
way of assessing the quality of inference: how do we know if 
inferred posterior includes true parameters if we do not know 
those ground truths? The standard solution to this challenge 
is to conduct inference on synthetic “validation” data because 
that data comes from simulations with known “ground truth” 
parameters. In this step, the neural network is blinded to the 
ground truth parameter values in the validation dataset; thus, 
the inferred parameter values (and posteriors) may be far from 
the ground truth values, alarming the analyst to deficiencies 
in the inference process. Combined with ABI, this validation 
method is especially powerful because one can quickly gener-
ate a large synthetic validation dataset and conduct the infer-
ence rapidly on all those distinct problems to assess the overall 
quality of the inference method. Not only standard practice in 
statistics and machine learning (Lueckmann et al. 2021; Radev 
et al. 2022), system dynamics scholars have also used synthetic 

data to validate their estimation workflow (e.g., see Rahmandad, 
Lim, and Sterman 2021).

In the rest of the manuscript, we provide an overview of the es-
timation process using the BayesFlow package, elaborate on the 
two test models, apply the tools to these models under different 
hyperparameters that control inference, and report on the effi-
cacy of methods, effective NN training settings, and computa-
tional costs.

4   |   Methods

A robust solution to the problem of integrating data and mod-
els allows us to incorporate qualitative data into our estimation 
workflow, enables the estimation of model parameters and their 
uncertainty in light of data, helps us validate our estimation 
framework, and can signal when more iterations on the model 
are called for and when we have a satisfactory solution. A prin-
cipled inference workflow ensures these requirements are ex-
plicit and can be addressed in different steps of the process. Such 
workflows have been developed with different points of focus; 
here, we adopt some of the terminology and steps from an in-
creasingly standard Bayesian inference framework (Gelman 
et al. 2020) and adapt them to working with system dynamics 
models. We overview the key steps of the inference framework 
and then introduce the components we use in our analysis.

4.1   |   Inference Steps

The inference process includes defining a generative engine, the 
neural networks for estimation, and the training schedule for 
inference.

4.1.1   |   Defining the Generative Engine

Estimation starts with defining a “generative engine” which 
consists of three components: (1) Our system dynamics sim-
ulation model. (2) The variables in the simulation model for 
which we have real-world data (i.e., an observation set). And (3) 
A prior distribution on unknown model parameters. Priors act 
as a synthesis of our pre-existing knowledge and assumptions, 
guiding the estimation process within plausible bounds. Note 
that we often also have parameters that we know with good 
certainty (e.g., the total population of a simulated country) or 
assume (e.g., using a linear function assumes a power of “one”) 
and thus are not part of the prior. Prior plays two roles in the 
workflow. First, it limits estimation outcomes to what is feasible 
based on the physics of the problem, qualitative data, and prior 
theory. Second, by sampling from the prior and simulating the 
model, one creates a wide range of behaviors that defines the 
whole category of system behaviors feasible under the genera-
tive engine rather than a single reference mode (Forrester 1961). 
The ABI aims to estimate parameters coming from any combi-
nation in this space. To keep the exposition simple, we use less 
informative (uniformly distributed) priors. This may also create 
more diverse outcomes when sampling from the prior, which 
are harder to learn by NNs; it is easy to replace these with other 
prior distributions.
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The simulation model should not only include the determinis-
tic processes we want to capture, but also the stochastic ones 
that drive a wedge between the perfect model and observed 
outcomes in the real word. That will allow inference to learn 
how to interpret the magnitude of the noise and associate it with 
relevant noise parameters. The distinction between process and 
measurement noise may be helpful for thinking about such sto-
chasticity, though they are similarly treated in the workflow. 
Process noise incorporates randomness that changes the dy-
namics of the system but is not deterministically known (e.g., 
weather effects in a model of COVID-19), while measurement 
noise captures uncertainty in the measurement process that 
otherwise does not change the dynamics of the system (e.g., the 
measurement errors in surveys). Both types should be explicitly 
modeled as part of the simulation model, with their correspond-
ing free parameters (e.g., standard deviation, auto-correlation) 
included in our estimated parameters and the prior distribu-
tions. As a result, typical models going into generative engines 
are stochastic, a departure from standard practice in classical 
system dynamics.

4.1.2   |   Defining Summary and Inference 
Neural Networks

Two different neural networks will be used in the ABI process 
we discuss here. The summary network converts the output of 
the simulation model into summary statistics to be used by the 
inference network. The inference network takes those summary 
statistics and outputs the posteriors for the parameters. Different 
types of neural networks could be used in both, though research 
is ongoing to identify better alternatives for different types of 
problems. We focus on using default options implemented in the 
BayesFlow that are most suitable for the types of problems sys-
tem dynamicists may encounter and briefly note the relevant hy-
perparameters, which could be adjusted for each problem based 
on the cumulative knowledge of what works in this space.

One effective summary network architecture for time series 
data combines a sequence of multi-layer 1D convolutional net-
works followed by a Long Short-Term Memory (LSTM) network 
(Radev et al. 2021). While much detail could be customized, the 
most important hyperparameters for such “SequenceNetwork” 
architectures are the number of convolutional layers, the num-
ber of LSTM units, and whether the network digests the data 
in a “bidirectional” fashion. For any summary network, we 
should also specify the dimensionality of the summary statistics 
(network output), which should be larger than the number of 
parameters (~2–4 times may be a good heuristic from our expe-
rience). Alternatively, or additionally, “manual” summary sta-
tistics could also be incorporated smoothly. We will discuss one 
example in our analysis.

For the inference NN, multiple layers of an invertible network 
with common architectures, including “affine” (Kingma and 
Dhariwal  2018; Ardizzone et  al.  2021) and “spline” (Durkan 
et al. 2019) (or their combinations, i.e., “interleaved”) are com-
mon. Whereas affine networks are computationally more ef-
ficient to train, spline networks may be more expressive for 
complex geometries of posteriors. The architecture and the 
number of coupling layers are the primary hyperparameters, 

though we only focus our comparisons on the number of cou-
pling layers, going with the default “affine” architecture that 
is computationally more efficient and thus more scalable for 
higher dimensional estimation problems common to system dy-
namics practice. Table 1 presents key hyperparameters for sum-
mary and inference networks.

4.1.3   |   Specifying the Training Schedule

In BayesFlow, the training of neural networks is automated 
under the hood, leveraging the TensorFlow framework and pack-
ages. All an analyst needs to do is to write the code to receive 
proposed model parameters from BayesFlow (drawn from the 
prior), do the simulations in the software of the analyst's choice 
(in our case, Vensim), and return the results to BayesFlow, in 
a fast and automated fashion. Training happens by minimizing 
a loss function that measures the Kullback-Leibler (KL) diver-
gence between the output of the forward pass on the invertible 
network (after receiving inputs from the summary network) 
and the standardized multivariate Gaussian distribution. The 
training schedule specifies how many simulations are to be con-
ducted and how they should be leveraged in training the NNs. 
Training happens through stochastic gradient descent methods, 
where the gradients of the loss function with respect to NNs 
parameters are calculated on a “batch” of simulations, and NN 
parameters (i.e., weights and biases) are then updated with a 
“learning rate.” For a given dataset of simulations, training may 
proceed by dividing all simulations into the required iterations 
for a single epoch of going through all the data (see explanations 
in Table 1). For example, 1,024 (=64 × 16) simulations could be 
divided into 64 iterations per epoch with a batch size of 16 simu-
lations per iteration. Larger batches give more precise gradients 
but take more time to calculate a single gradient. The learning 
rate is often dynamically adjusted during the training and is re-
duced through a “decay” strategy (e.g., cosine decay) so that by 
the end of the training, the NN parameters are fine-tuned, and 
the network is stabilized. Multiple epochs could be defined for 
training, and as long as loss values on a validation dataset (to 
avoid overfitting) decline over epochs, training on the existing 
data adds value. While such “offline” training on a fixed dataset 
simulated at the outset is conceptually straightforward, other al-
ternatives may work better in some settings. For example, if the 
simulation model is fast and data exchange between simulation 
and NN training is quick, fully online training may be preferred, 
where every batch calls for new samples (and overfitting is not a 
concern). A round-based mixed approach goes through multiple 
rounds; at the beginning of each, a new dataset of simulations is 
created and appended to the previous ones, and then the training 
goes through the required iterations, given the batch size, for the 
number of epochs specified per round. This method incorporates 
new data continuously but does not discard the old data either.

4.1.4   |   Implementation Notes

All simulations are run in Vensim DSS, and data is transferred 
to BayesFlow using either DLL functionality (more efficient for 
larger models; simplified with VenPy package) or automated 
scripts (using VST package). To maximize efficiency, we use 
sensitivity analysis in Vensim that could be parallelized and 
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compiled, with proposed BayesFlow parameters written in a 
text file that is input to sensitivity analysis. We have written the 
Python functions to integrate these capabilities with Vensim 
seamlessly, and the code is available for others to use and ex-
tend to new problems (see the GitHub link in the Supporting 
Information). With this machinery in place, the application 
costs are rather minimal after an initial installation process that 
may take a couple of hours, and most users do not need much 
coding to leverage the tools (and what coding is needed could be 
handled with the support of increasingly capable generative AI 
platforms such as ChatGPT and Gemini). It is straightforward 
to use other simulation software instead of Vensim, if they could 
receive programmatic instructions to generate a batch of simula-
tions and output it back in text or DLL connections. In practice, 
the simulation time may not be too long for most system dynam-
ics models, where a few million simulations should suffice for 
ABI; rather, the training time for NNs becomes the main com-
putational bottleneck, and there the use of GPUs proves helpful, 
cutting training times by a few folds compared to CPU-based 
training. All reported analyses were conducted on a Windows 
environment using an NVIDIA A2 Tensor Core GPU with 16GB 
GPU Memory. Although the PC has abundant CPU (128 Cores) 

and RAM (512GB) resources, the BayesFlow algorithm barely 
used more than 2% of such resources compared to more than 
95% utilization of GPU during our experiments.

4.2   |   Inference Validation and Assessment

Once the NN is trained, the posteriors for any dataset can be 
(almost) instantaneously generated. We need metrics to quantify 
how effective this process is. The metrics we explore below focus 
on different costs of inference and the internal consistency of 
the inference process, that is, if the model was correct, how well 
could we identify the parameters and their uncertainty?

4.2.1   |   The Data and Computational Requirements 
for Estimating the Model

How many simulations are required for satisfactory training? 
How much training time is needed for a satisfactory output? 
One could change the data/training size and observe the impact 
on performance or fix the data/training time and measure the 

TABLE 1    |    Key hyperparameters and their definitions.

Category Hyperparameter Explanation

Summary network Convolutional layers A computational layer used in neural networks that processes data 
through a series of learnable filters. This layer helps capture spatial 
or temporal hierarchies in data by applying convolutions over the 

input and passing the result through an activation function.

Summary dimensions The size of the output vector produced by the summary network. 
It represents the condensed information extracted from the 

input data, which is then fed into the inference network.

LSTM units (Number of) basic units of a Long Short-Term Memory (LSTM) layer, designed 
to remember information for long periods. LSTM units help process time-

series data by capturing temporal dependencies and sequences in the input.

Inference network Coupling layers (Number of) layers of normalizing flow network which learn 
the shape of posterior distribution under different datasets. They 
allow the model to perform intricate transformations by coupling 

parts of the input reversibly, aiding in efficient inference.

Bidirectional Whether to use bidirectional LSTMs that allow the network to process 
data in both forward and backward directions. This improves the 

model's understanding of early data and utilizing it more effectively.

Training Learning rate The learning rate determines the size of the steps taken while 
optimizing the network's weights. A higher learning rate may 

lead to faster convergence but can become unstable while a lower 
learning rate ensures more stable but slower convergence.

Batches The number of training samples processed to calculate gradients before 
the NN's internal parameters are updated. Batch size affects the speed 

and stability of the learning process, with smaller batches generally 
providing more frequent but less reliable updates and larger batches 

reducing the number of updates but making each more precise.

Epochs One complete pass through the current training dataset. The number of 
epochs determines how many times the learning algorithm will work through 

the entire dataset. More epochs allow the model to better learn from the 
data at the cost of increased computational time and potential overfit.
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change in performance. For data input, we focus on the number 
of simulations conducted, and for computational costs, we re-
port wall time along with hardware specifications.

Other useful measures include posterior contraction and Z-
score. The former measures the shrinkage fraction in the stan-
dard deviation of parameters going from the prior distribution to 
the estimated posteriors. A value close to one suggests that infer-
ence has extracted a lot of data and provides reliable estimates 
for the parameter. Posterior Z-scores normalize and compare 
the estimated parameter values against the ground truth, with a 
value of 0 offering perfect recovery and an expected spread with 
a standard deviation of one for a good inference.

4.2.2   |   Quality of Inference

Multiple metrics could inform the quality of inference. The loss 
function from the training of neural networks is a useful indica-
tor, especially when applied to a validation dataset not used in 
training (and thus not suffering from overfitting). While the KL 
divergence value is not fully comparable across problems, for a 
given problem, the loss values are directly comparable, and typi-
cally, values below 0 start to indicate good convergence.

SBC provides a more rigorous method for assessing inference qual-
ity (Talts et al. 2020). The inference is deemed reliable if the prior 
distribution for each parameter is similar to the samples of posteri-
ors from different synthetic datasets generated (by the simulation 
model) after drawing the parameters from the prior distribution, 
generating data, and inferring posteriors. By generating hundreds 
of different parameter sets, many datasets per each parameter set 
(which would be different given the stochasticity of models), and 
conducting inference on all those data, one can use Empirical 
Cumulative Distribution Function plots (ECDF) (Säilynoja, 
Bürkner, and Vehtari 2022) to formally test the quality of inference.

The precision of estimated CIs is also intuitive and informative. 
We first create different synthetic datasets from ground truth 
parameters drawn from the prior distribution. Next, we estimate 
the posteriors and CIs for those and assess the empirical fraction 
of ground truth falling into different CIs, comparing that to the 
expected fraction. A 45° line suggests a good calibration of CIs.

4.3   |   Model Assessment

Finally, model assessment could be pursued based on a host of 
metrics. Many focus on the predictive performance of the mod-
els out of sample, a useful measure, though one with caveats re-
lated to loss of precious data and limited information on how 
much room for improvement there may be. Another useful set 
of measures identifies the gap between empirical summary sta-
tistics and those coming from an estimated simulation model. 
Aggregating the gaps into a single measure, such as Maximum 
Mean Discrepancy (MMD) (Gretton et al. 2012), provides formal 
tests for assessing the quality of the model in light of the observed 
data and can inform future iterations (Schmitt et al. 2022). Due 
to limited space, we will not be utilizing this approach in the 
current paper and will only introduce the idea, given its rele-
vance for an iterative inference workflow.

4.4   |   Model 1: Random Walk

Figure 2 shows the structure of the Random Walk model. This 
model is, by design, very simple. It focuses on capturing pro-
cess and multiplicative measurement noise which are sufficient 
to rule out explicit likelihood functions, but otherwise lacks 
many complexities common to SD models. The state (S) of the 
system evolves over time through processes known as drift (d) 
and shock (K). Drift (d) represents the predictable or “expected” 
change, while shock (K) represents the stochasticity, process 
noise, in the dynamics. Shock (K) is modeled as a normal distri-
bution with a process noise standard deviation of σp. In addition, 
the state observed (SObs) is derived from the “true” state (S) with 
a multiplicative normally distributed measurement noise char-
acterized by a standard deviation of σm. All model parameters 
(i.e., d, S0, σp, and σm) are drawn from uniform distributions, 
with their corresponding minimum, maximum, and pseudo-
random number stream (ns) (the additional links from ns to the 
parameters are hidden for visual clarity). Table 2 summarizes 
the model formulations and priors. Online Appendix S1 includes 
full model documentation.

Figure  3 shows the model's different modes of behavior as a 
result of unique sets of parameters generated through random 
draws from the uniform distributions of the priors.

4.5   |   Model 2: SEIRb

Figure  4 shows the simplified structure of the SEIRb model. 
The model is similar to the classical SEIR (Susceptible, Exposed, 
Infectious, Recovered) model with an additional endogenous 
behavioral-risk response mechanism where transmission in-
tensity grows (declines) as the death rate declines (grows). The 

FIGURE 2    |    Structure of the Random Walk model.

TABLE 2    |    Parameter priors of the Random Walk model that are 
estimated.

Name Prior Units

Drift 𝑑 = Uniform (−1, 1) 1/Time

Initial state 𝑆0 = Uniform (0, 10) Dimensionless

Process noise 
standard deviation

𝜎p = Uniform (0, 0.5) 1/Time

Measurement 
noise standard 
deviation

𝜎m = Uniform (0, 0.5) Dimensionless
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details of the model are described elsewhere (e.g., Rahmandad, 
Xu, and Ghaffarzadegan  2022b). In short, the Transmission 
Intensity (𝛽) regulates the speed of transmission, and Patient 
Zero Arrival Time (𝑡0) specifies the introduction time for the 
disease. The Infection Fatality Rate (IFR) is the fraction of in-
fected people who die. Time to onset and removal are assumed 
to be known based on clinical knowledge and not separately es-
timated. Besides these core SEIR components, a few parameters 
regulate the behavioral feedback loop. Two time constants, Time 
to Onset (ts) and Time to Removal (tr), regulate the adjustment of 
the perceived risk of death (PDR) to the actual death rates using 
an asymmetric first order smooth. Two parameters, Sensitivity 
to Death (α) and Death Risk Diminishing Impact (𝛾), regulate 
the strength of behavioral response (Effect of Perceived Risk on 
Attack Rate, EPA) using the following function:

We assume three data series are observable: Onset, Recovery, 
and Deaths. These measurements are imprecise, and part of the 
model's stochasticity comes from the multiplicative measure-
ment noise affecting Simulated Onset Data (SOD), Simulated 
Recovery Data (SRD), and Simulated Death Rate Data (SDD)2. 
The stochasticity is also caused by the Process Noise (PN) im-
pacting the Exposure Rate (ER). These noise functions all 
include Gaussian distributions with their corresponding (un-
known) standard deviations (σi; for a total of 4 parameters), 
with PN being also first-order autocorrelated and thus including 
another unknown parameter (Process Noise Correlation Time, 
Crrτ). Overall, the model includes 12 unknowns (to be estimated 
parameters), two assumed/known parameters, and three daily 
observed time series that inform inference.

Figure 5 shows the model's behavior generated using different 
parameter values randomly drawn from the uniformly distrib-
uted priors. The simulations represent different modes of behav-
ior (e.g., overshoot and oscillation) for onset, recovery, and death 
rate data. For simplicity, we assumed an identical population 
(one million) across all simulations. All parameter priors, in-
cluding the noise standard deviations and correlation time, are 
randomly drawn from their corresponding uniform distribu-
tions and used in the neural estimation. Table 3 summarizes the 
model parameters being estimated and their priors. We set the 
parameter boundaries based on the feasible empirical ranges in 
the case of COVID-19 for different parameters (e.g., Rahmandad, 
Xu, and Ghaffarzadegan 2022b). Online Appendix S1 includes 
full model documentation.

5   |   Results

In reporting the results, we start by discussing experiments on 
various hyperparameters of the inference algorithm. Specifically, 

EPA =
1

1 + (� ⋅PDR)�

FIGURE 3    |    Random Walk model behavior (50 simulations) using 
randomly drawn values from parameter priors.

FIGURE 4    |    Simplified structure of the SEIRb model.
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for each model, we set a baseline (largely aligned with default 
parameters of BayesFlow) and assess how deviations in each pa-
rameter from that baseline impact training performance. Based 
on those results, we then specify an “optimized” hyperparame-
ter setting for each model and conduct ABI using those hyperpa-
rameters and with different levels of simulation data informing 
inference. Below, we first report on the experiments with hyper-
parameters across both models and then share inference results 
for each model separately.

5.1   |   Exploring Inference Hyperparameters

To have a better understanding of the role of hyperparameters in 
the inference performance (i.e., training and validation losses) 
and the training time, we conducted a series of experiments with 
both models before finalizing the setup for the main inference 
work. For these experiments, we defined baseline hyperparam-
eter values based on the default settings provided by BayesFlow 
and our initial intuition of the required adjustments around 
those values. We chose the training parameters so that enough 
data is provided for inference to start working, but not too well, 

so there is room for improvement, and inference time is rela-
tively short. Then, we varied the hyperparameters of inference 
around these baseline setups to observe the impact of individual 
assumptions on the training time and (validation sample) loss 
values for both Random Walk and SEIRb models.

From the insights we gained through these experiments, which 
will be discussed below, we came up with sets of hyperparam-
eters that would provide the “Optimized” NN performance. 
Next, we used the “Optimized” hyperparameters with the same 
amount of data (as baseline) and an “Extended” version where 
more data (with optimized hyperparameters) provides the final 
outcome of inference. Table 4 summarizes the hyperparameters 
used in each scenario and some outcomes.

Variations in the hyperparameters result in changes in the (vali-
dation) loss value and training time, as shown in Figures 6 and 7. 
In general, more complex network structures (e.g., a higher num-
ber of convolutional layers or coupling layers) are more expres-
sive and can offer better fit (smaller loss values; values below zero 
show getting to convergence, although the optimal value that sig-
nals perfect training will depend on the problem). However, they 
can increase the computational cost and may increase the risk of 
overfitting. In fact, convolutional layers do not offer much value 

TABLE 3    |    Parameter priors of the SEIRb model that are estimated.

Name Prior Unit

Infection fatality rate IFR = Uniform 
(0.003, 0.01)

Dimensionless

Sensitivity to death α = Uniform 
(0.01, 100)

Day/Person

Transmission 
intensity

𝛽 = Uniform 
(0.1, 4)

1/Day

Death risk 
diminishing impact

𝛾 = Uniform (0, 5) Dimensionless

Time to perceive 𝑡p = Uniform 
(5, 100)

Day

Time to reduce risk 𝑡d = Uniform 
(10, 400)

Day

Patient zero arrival 
time

𝑡0 = Uniform 
(0, 100)

Day

Recovery 
measurement noise 
standard deviation

𝜎r = Uniform 
(0, 0.3)

Dimensionless

Onset measurement 
noise standard 
deviation

𝜎o = Uniform 
(0, 0.3)

Dimensionless

Death rate 
measurement noise 
standard deviation

𝜎d = Uniform 
(0, 0.3)

Dimensionless

Process noise 
correlation time

Crrτ = Uniform 
(2, 20)

Day

Process noise 
standard deviation

𝜎p = Uniform 
(0, 0.3)

Dimensionless

FIGURE 5    |    SEIRb model behavior (200 simulations) using random-
ly drawn values from parameter priors.
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TABLE 4    |    Hyperparameters used during neural network training for each model.

Random Walk SEIRb

Baseline Optimized Extended Baseline Optimized Extended

Summary network

Convolutional layers 2 4 4 3 4 4

Summary dimensions 10 20 20 30 40 40

LSTM units 128 128 128 128 128 128

Manual summary statistics False True True False True True

Inference network

Coupling layers 4 6 6 6 8 8

Learning rate 0.0005 0.0010 0.0010 0.0010 0.0010 0.0010

Bidirectional False True True True True True

Training

Batches 32 32 32 32 32 32

Epochs 20 20 10 20 20 10

Rounds 5 5 20 5 5 10

Sims per round 1024 1024 8192 8192 8192 20,000

Loss −4.368 −4.148 −5.307 4.715 1.726 −4.574

Wall Time 5 min 28 s 6 min 4 s 4 h 19 min 1 h 5 min 1 h 12 min 5 h 40 min

FIGURE 6    |    Impact of hyperparameters on validation loss and training time for the Random Walk model. Labels denote specific configurations 
with their corresponding values: Sd5, Sd10, Sd20 for Summary Dimensions; +man (with manual statistics), no_man (without manual statistics); Cl1, 
Cl2, Cl3 for Convolutional Layers; B16, B32, B64 for Batches; e10, e20, e30 for Epochs; LR5, LR10, LR20 for Learning Rate (LR10 means: LR = 0.0010); 
L64, L128, L256 for LSTM Units; f16u, f32u (unidirectional), f16b, f32b (bidirectional) for Float; CP2, CP4, CP6 for Coupling Layers.
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in our settings, with the LSTM part of the summary network hav-
ing the bigger impact. We find value in using bidirectional LSTM 
summary networks, so we adopt that into our optimized settings 
and the baseline for SEIRb. Inference coupling layers and LSTM 
units are the largest contributors to NN training time (and bidi-
rectional doubles the size of the LSTM network; so, it also impacts 
training time). Using float16 number formats offers slight savings 
but not enough to be worthwhile in our setup (given additional 
work to ensure robustness to smaller numerical precision).

Furthermore, keeping total data constant, more simulations 
per batch can significantly reduce the training time but at the 
expense of worse loss values (because the NN is updated fewer 
times). However, one could increase the number of epochs 
with larger batch sizes to get to a similar training time, mak-
ing it challenging to find the optimal batch size. Nevertheless, 
the general recommendation is to avoid higher batch sizes to 
prevent memory allocation issues and use powers of 2 to uti-
lize computational resources more efficiently. So, we find val-
ues of 32 and 64 to be best for our experiments and models. In 
addition, a greater number of epochs improves fit. However, 
they linearly increase the training time and become less valu-
able as the model starts to overfit after extracting the gener-
alizable information in a dataset. We find learning rates only 
modestly impactful, and a value of 0.0010 is a good choice in 
our experiments.

More summary statistics could add some value up to a point 
(e.g., around 2–4 times the number of parameters) but become 

ineffective and potentially problematic if going much beyond 
that. To define manual summary statistics, we first calcu-
late, for each data series, the residual between the data and 
a Savitzky-Golay second-order fitted line to the data. We 
then use the 0, 3, and 10 period lagged covariance matrix of 
these residuals across different data series. For example, in a 
Random Walk model that includes residual variance, 1-period 
lagged autocorrelation of residual, and 10-period lagged au-
tocorrelation. For SEIRb, the covariances across residuals 
for different data series are added for different lags. We note 
that using manual summary statistics helps speed up the 
early identification of noise parameters but does not provide 
a longer-term benefit to the Random Walk model because it 
is already performing rather well by the end of training in the 
baseline. In contrast, manual summary statistics result in sig-
nificant improvements in the SEIRb model (which is far from 
fully tuned in the baseline). Therefore, we adopt manual sum-
mary statistics for the final NN training. In addition, we were 
mindful of overfitting caused by using the same data multi-
ple times (in multiple rounds and epochs), so in the extended 
training for the SEIRb model, while we increased the number 
of rounds too, we simultaneously decreased the number of ep-
ochs to avoid overfitting.

5.2   |   Random Walk Inference Results

Here, we focus on reporting inference results from the “ex-
tended” run of the Random Walk model, though to provide 

FIGURE 7    |    Impact of hyperparameters on validation loss and training time for the SEIRb model. Labels denote specific configurations with 
their corresponding values: Sd20, Sd30, Sd50 for Summary Dimensions; +man (with manual statistics), no_man (without manual statistics); Cl2, 
Cl3, Cl4 for Convolutional Layers; B16, B32, B64, B128, B256 for Batches; e10, e20, e30 for Epochs; LR5, LR10, LR20 for Learning Rate (LR10 means: 
LR = 0.0010); L64, L128, L256 for LSTM Units; f16u, f32u (unidirectional), f16b, f32b (bidirectional) for Float; CP4, CP6, CP8 for Coupling Layers.
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better intuition on the impact of more/less training and data, 
we also compare that with the “optimized” run. To start, let us 
consider how an ABI inference is often utilized in practice, that 
is when we want to estimate model parameters based on one (or 
more) “empirical” datasets. The first thing to note is that ABI 
does NOT need the empirical dataset to build inference NNs! 
All it needs is the generative engine (the simulation model, the 
observable outcomes, and the priors) and settings for the train-
ing of NNs. The inference is completed by simulating the system 
dynamics model using different draws of the priors and train-
ing the NNs so that they identify reasonable summary statistics 
and are able to generate the posteriors for parameters given any 
simulated dataset. The main output of ABI is the trained sum-
mary and inference neural networks (e.g., for “optimized” and 
“extended” cases) and the “empirical” datasets play no role up 
to this point. When those NNs are trained, they could be used 
for inference on any “empirical” (or synthetic) dataset using the 
generative engine at hand.

Let us consider one concrete example of such a dataset for 
Random Walk. Figure 8a shows the time trajectory of a sin-
gle dataset for the Random Walk model (in black dots con-
nected with dashed lines). The dataset is indeed generated 
by the Random Walk model (i.e., is synthetic) and as such we 
know the true values of parameters and are confident that the 
model structure is “correct.” A real “empirical” dataset would 
have a similar data structure, but we would not know about 
the true parameter values. Now, we can input this dataset into 
the trained NNs and ask for samples of posteriors for model 
parameters. Figure 8b shows a sample of 500 draws from the 
posterior coming out of ‘extended’ inference in marginal and 
bi-variate plots. Black dots/dashed black lines point to the 
ground truth for each parameter. The diagram demonstrates 
that ground truth falls within the inferred posteriors. Table 5 
reports the summary of posteriors, including median, mean, 
maximum a posteriori (MAP), and 95%-CI and the ground 
truth of the parameters used for generating the single syn-
thetic dataset, indicating that posteriors are well informed 
by data.

In other words, the algorithm has learned how to correctly iden-
tify the parameter values with reliable CIs, at least for this sin-
gle dataset. In fact, one could take a sample of parameters from 
posterior, simulate the model again (with different noise seeds to 
generate independent random variations) and observe how the 
ensemble of the simulated outcomes vary over time. The rele-
vant uncertainty intervals for such “posterior predictive check” 
are graphed in Figure  8a showing good correspondence with 
the data.

At this point, one might ask: how do these outcomes differ 
from the conventional calibration methods that most system 
dynamics modelers are familiar with? Figure 8a also includes 
the calibration trajectory obtained by minimizing the com-
mon least squared error between the simulation and data. 
That calibration offers estimates for two of the parameters: 
𝑑 = −0.791 and 𝑆0 = 9.530. Comparing this outcome with the 
ones obtained through ABI reveals some key differences. First, 
the traditional calibration methods are deterministic, failing 
to explain the magnitude of variations around the mean and 
their ranges in data. Therefore, they offer no estimates for 

noise parameters (𝜎p and 𝜎m). Second, unlike the ABI results, 
conventional calibration methods result in point estimates for 
parameter values and do not offer any information on the pos-
terior distributions or credible intervals. So, we actually do not 
know how good those estimates are: could the drift value be 
−0.9? we cannot answer that in a simple calibration. These 
limitations highlight two key advantages of using an ABI.

A third issue arises when one asks whether the reasonable in-
ference we obtained on a single dataset was merely by chance 
or the method can reliably recover the model parameters at 
scale. Traditional calibration is silent on this question, but 
ABI provides a systemic method to answer it. Specifically, we 
could conduct inference on many different (synthetic) data-
sets and compare the results against the ground truth for each. 
Figure 9a shows the results of such an exercise. Here, we do 
the inference 1000 times on different (synthetic) datasets (sim-
ulating the model with different parameters drawn from the 
priors and different noise streams). Then, for each synthetic 
dataset, we use the trained (in an “extended” scenario) NN to 
draw 1000 samples of the inferred posteriors for parameters. 
Note that the amortized nature of ABI makes these steps fast 
and easy: drawing 1000 posterior samples for the 1000 dif-
ferent synthetic datasets takes only a few seconds. With that 
data we graph the ground truth (x-axis) against the median of 
the posterior and the 10–90 percentile range on the y-axis for 
each estimated parameter. The closer the graph is to the 45° 
line with tighter 10–90 ranges, the tighter and more accurate 
the posteriors. The differences in accurate recovery of ground 
truth across parameters are notable. “Drift” is almost perfectly 
identified; 𝑆0 and 𝜎M are also well identified, especially if the 
values for these two parameters are rather small. 𝜎P remains 
rather uncertain in many cases even after plenty of training 
(additional experiments show that more data and training do 
not reduce the uncertainty here). In other words, the variance 
in process noise is hard to pin down. The reason is that in this 
model, process noise is additive, whereas measurement noise 
is multiplicative. Therefore, the impact of measurement noise 
increases (to 10 s) as the stock values grow larger (in absolute), 
overwhelming any signal of the process noise (typically below 
0.5 in each period) that could be detectable in the dataset, un-
less drift is close to zero, or measurement noise is very close 
to zero. Measurement noise is, however, easier to detect given 
how its impact scales with the size of the underlying stock.

The precision of the estimated credible intervals could also 
be assessed more formally. Figure  9b graphs the fraction of 
ground truth parameters that fall within different (centered) 
percentiles of posteriors. For example, a Y value of 0.52 at X of 
0.5 means 52% of ground truth parameters have fallen within 
the centered 50% (i.e., 25–75 percentile interval) credible in-
terval for the parameter. Perfect CIs fall on the 45° line, as 
they do in this example, with lines below 45° showing over-
confident CIs and lines above pointing to over-conservatism 
of CIs.

Another way to visualize these effects is to consider two 
qualities of inferred parameters: how much the posterior has 
shrunk (Posterior Contraction: one minus the ratio of poste-
rior standard deviation to that of prior) and if it is biased in 
comparison to ground truth. For each of the synthetic datasets, 
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posterior contraction (x-axis) is graphed against the posterior 
Z-score (y-axis) in Figure 9c. The latter measures the distance 
between ground truth and the mean of the posterior sample 
for each estimation and divides that by the standard deviation 
of the posterior sample. Values centered around zero and not 
falling much outside of the [−2,2] range are usually desired 

and show limited bias. By this measure, all our parameter re-
coveries are unbiased, while the posterior contraction is high 
for all but 𝜎P, where it is smaller (and highly variable). Note 
that this observation does not point to a weakness of inference 
but the inherent complexity of estimating the process noise pa-
rameter here.

FIGURE 8    |    (a) Posterior predictive check displaying the credible intervals derived from simulating the Random Walk model using 500 parameter 
samples drawn from the posterior distributions from the “extended” inference. The black dots connected by dashed lines represent the synthetic data 
(using ground truth parameters, and unknown noise streams), and (b) joint posterior distributions for 500 samples from the “extended” inference. 
Off-diagonal plots display the bivariate posterior distributions between parameter pairs, while the diagonal plots represent the marginal posterior 
distributions for each parameter. The vertical dashed lines (or black dots on the off-diagonal plots) indicate the ground truth of parameter values used 
to generate the synthetic data.

Conventional calibration

(a)

(b)
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ABI enabled the large-scale experiments above to be conducted 
in only a few seconds, with the majority of the time needed for 
simulating the synthetic datasets. These experiments provide 
one set of reassuring evidence about the reliability of inference. 
Another formal way to validate the inference procedure is to 
use Simulation Based Calibration (SBC; Note that “Calibration” 
in this case is used somewhat differently than the norm in the 
system dynamics community, pointing to fine-tuning of the in-
ference procedure rather than identification of any single param-
eter). Starting with a sample of M prior draws, we will generate 

M datasets and N posterior draws per each dataset, comparing 
the distribution of M prior draws with the M*N samples of poste-
riors to test if they follow the same distribution. Formal tests are 
available for this purpose, and Figure 10 shows the ECDF rank 
test results for the Random Walk parameters. When the Rank 
graph exits the confidence bar (gray ovals for 95% in this case), 
it signals a potential mismatch between prior and posterior sam-
ple distributions. In this case, we see no such deviation (beyond 
luck) and thus can conclude that our inference method is work-
ing well and creating reliable posteriors for each parameter.

TABLE 5    |    Posterior summaries and 95%-CIs for each model parameter inferred from the Random Walk model synthetic data generated using 
ground truth parameter values.

Parameter Median Mean MAP 95%-CI Ground truth Unit

Drift 𝑑 −0.773 −0.774 −0.771 [−0.883 to −0.669] −0.812 1/Time

Initial state 𝑆0 8.406 8.417 8.288 [7.166 to 9.676] 8.673 Dimensionless

Process noise standard deviation 𝜎p 0.435 0.426 0.464 [0.318 to 0.500] 0.436 1/Time

Measurement noise standard 
deviation

𝜎m 0.305 0.305 0.305 [0.261 to 0.351] 0.309 Dimensionless

FIGURE 9    |    Inference using 1000 different synthetic datasets from the Random Walk model, extended run, including the (a) estimated param-
eter against the ground truth, (b) fraction of ground truth parameters that fall within different (centered) percentiles of posteriors, and (c) posterior 
contraction against posterior Z-score.

(b)

(c)

(a)
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Overall, the results show that the inference procedure works 
well on the Random Walk model and offers reliable parameter 
estimates and CIs.

5.3   |   SEIRb Inference Results

In reporting the results for SEIRb experiments, we follow the 
same flow as the Random Walk model. First, Figure 11 shows 
a single synthetic dataset (panel a, consisting of onset, recovery, 
and death data) and inferred posteriors and ground truth for the 
12 parameters (panel b). The example dataset includes a large 
wave of the epidemic followed by smaller ones over a 300-day 
period. The synthetic dataset is generated using random draws 
from the prior values, and it is not used during the training of 
the neural network. Therefore, it is new unseen data for the NN. 

Table  6 summarizes the posteriors, including median, mean, 
maximum a posteriori (MAP), and 95%-CI as well as the ground 
truth parameters used for generating the single synthetic data-
set. A few observations are noteworthy. First, parameter posteri-
ors are enveloping the ground truth very well (both in Figure 11 
and Table  6). Second, posteriors for some parameters show 
significant interdependence, for example, higher values of α 
coincide with higher values of 𝑇p in the posterior samples. The 
intuition is that the same level of behavioral response may point 
to higher responsiveness (α) combined with slower risk percep-
tion (higher 𝑇p), or lower responsiveness combined with faster 
risk perception, an insight not previously noted in the analysis of 
the SEIRb model (Rahmandad, Xu, and Ghaffarzadegan 2022b). 
Reliable posteriors should reveal such interdependencies that 
matter conceptually. Third, the posterior for some parameters 
remains rather wide, most notably those related to parameters of 

FIGURE 10    |    Empirical cumulative distribution functions (ECDF) of rank statistics for Random Walk model, extended run.

(a)
FIGURE 11    |    (a) The synthetic data (black dots connected by dashed lines) used for inference enveloped by posterior predictive check displaying 
the credible intervals derived from simulating the SEIRb model using 500 parameter samples drawn from the posterior distributions from the “ex-
tended” inference, and (b) joint posterior distributions for 500 samples from the “extended” inference. Off-diagonal plots display the bivariate poste-
rior distributions between parameter pairs, while the diagonal plots represent the marginal posterior distributions for each parameter. The vertical 
dashed lines (or black dots on the off-diagonal plots) indicate the ground truth of parameter values used to generate the synthetic data.
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process noise (CrrT and 𝜎PN). The CIs for outcomes envelope the 
observed data closely and consistent with the implied uncertain-
ties. So, overall, this single inference provides encouraging and 
consistent results. See Online Supporting Information for more 
details and another example.

Figure  12 reports on large-scale experiments for validating the 
inference framework for SEIRb more generally. The spread in 
recovered parameters (and their 10-90 CIs), as well as posterior 
contraction graphs, suggest reliable inference for IFR, 𝑇0, 𝛾, 𝛽, 
and measurement noise standard deviations (𝜎R, 𝜎O, 𝜎D), weaker 
contraction for α, 𝑇p (due to their collinearity; otherwise individ-
ually each would have been well identified) and 𝑇d, very weak 

contraction for process noise standard deviation (𝜎PN) and almost 
no contraction for process noise correlation time. These graphs do 
not establish if the parameters are efficiently identified (and thus 
not any better identifiable given this type of observed data) or that 
better identification can be achieved with more data (and/or train-
ing). To assess these possibilities, one needs to run more training 
and see if contraction scores improve at all.

It is encouraging to see that Z-scores show no systematic bias 
in recovered parameters, and we do not see many notable out-
liers. The CI precision plots are mostly on the 45° line, suggest-
ing reliable CIs but with some deviations for 𝑇0 and potentially 
IFR and CrrT. In all those cases, the CIs are a bit too tight, a 

FIGURE 11    |     (Continued)

(b)
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potential concern as such bias may make the analyst overcon-
fident. Those concerns are reinforced by the ECDF graphs in 
Figure 13. Again, while for most parameters, the test finds no 
difference in prior and sampled posterior distributions, for a 
few, it does. Those include the ones with imprecise CIs but also 
𝜎D. Curiously, these parameters are the ones with very good 
contraction; that is, the model is identifying the ground truth 
very closely but is somehow failing in correctly inferring the 
shape of the posterior distribution, at least in some datasets.

While poor identification of CrrT may explain the SBC diver-
gence for that outcome, results for 𝑇0 and IFR may, in fact, 
be pointing to a more general challenge in ABI. If the data 
very accurately identifies some parameter (such as these two), 
the posterior will be very tightly sampled (close to the ground 
truth). However, during the training of the inference and sum-
mary networks, the training samples are uniformly sampled 
from the prior, and thus, any small parameter region may get 
very few samples. For example, if the ground truth for 𝑇0 is 7.1 
(the neighborhood for our “empirical” dataset in Figure  11), 
the tight posterior will only be informed by samples falling be-
tween 6.7 and 7.5. Yet those samples are few (~1% of the total). 
The problem could be even more challenging. The higher the 
dimensionality of the parameter space, the more acute this 
problem can get because the curvature of the posterior for one 
parameter may depend on the values of other parameters. In 
those cases, the relevant combinations observed in training 
data shrink fast (with parameter dimensionality), reducing the 
accuracy of inferred posteriors. Interestingly, this challenge 
becomes more acute when the parameters are best identified 
by the available data. Overcoming this challenge may require a 
lot more training or giving up ABI in favor of sequential NPE.

Overall, the method is largely effective for the SEIRb example 
with unbiased posteriors that extract a lot of the information 

from the data and largely (but not fully) reliable posteriors. The 
problems in posteriors are most acute for the best-identified pa-
rameters with very sharp curvature in their posteriors not fully 
calibrated with the limited data in the relevant region, as well as 
the worst identified parameters.

5.4   |   Impact of Training Budget

The results above focused on the “extended” runs, which include 
significantly more data than baseline or optimized setups. In 
Figure 14, we show the recovery and SBC plots for Random Walk 
from the optimized run to see how well inference performs with 
32 times less data (1024 × 5 vs. 8096 × 20) and 56 times less train-
ing (given more training per dataset) than the extended case, 
which brings down the wall time for inference from 5 h to 5 min. 
The results are rather encouraging. Only the contraction for 𝜎p 
is notably weaker with posterior problems identified for that pa-
rameter, and perhaps for 𝑆0. In short, the Random Walk problem 
is easy, and in fact, we can get comparable performance as the 
optimized scenario with even less training and data, completing 
a reasonable inference in less than 2 min. That is partly made fea-
sible using manual summary statistics that are especially helpful 
for identifying the 𝜎M quickly. Those summary statistics are spe-
cifically focused on characteristics of residuals and, as such, are 
especially informative about features of measurement noise that 
take more time to detect through automated summary statistics.

A similar comparison for SEIRb reinforces the same basic find-
ings. With an order of magnitude less data/training, we can still 
identify most model parameters fairly well, with SBC outcomes 
that suggest the results are reliable (Figure  15). However, for 
some parameters (e.g., IFR), the CIs are much wider in the “op-
timized” compared to the “extended” scenario, even though 
the SBC plots hint at no problem in inference. This observation 

TABLE 6    |    Posterior summaries and 95%-CIs for each model parameter inferred from the SEIRb synthetic data generated using ground truth 
parameter values.

Parameter Median Mean MAP 95%-CI Ground truth Unit

Infection fatality rate IFR 0.009 0.009 0.009 [0.009–0.010] 0.009 Dimensionless

Sensitivity to death α 10.029 10.362 9.893 [2.692–21.103] 12.327 Day/Person

Transmission intensity 𝛽 2.278 2.319 2.255 [1.802–3.111] 2.495 1/Day

Death risk diminishing impact 𝛾 1.842 1.892 1.814 [1.524–2.533] 1.74 Dimensionless

Time to perceive 𝑡p 66.869 64.226 68.539 [16.951–100.000] 83.774 Day

Time to reduce risk 𝑡d 25.228 25.926 24.842 [19.789–36.290] 22.211 Day

Patient zero arrival time 𝑡0 7.129 7.131 7.138 [6.855–7.424] 7.068 Day

Recovery measurement noise 
standard deviation

𝜎r 0.209 0.209 0.209 [0.175–0.241] 0.211 Dimensionless

Onset measurement noise 
standard deviation

𝜎o 0.094 0.094 0.096 [0.067–0.122] 0.086 Dimensionless

Death rate measurement noise 
standard deviation

𝜎d 0.181 0.181 0.179 [0.135–0.227] 0.209 Dimensionless

Process noise correlation time Crrτ 11.100 11.083 11.258 [2.000–20.000] 17.165 Day

Process noise standard deviation 𝜎p 0.151 0.153 0.143 [0.000–0.300] 0.081 Dimensionless
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suggests that the SBC method does not fully reveal the efficiency 
of inference and may confirm the reliability of a method with 
wider (than optimal) posteriors (but ones that show no bias in 
one direction or another). Additional explorations showed that, 
again, the manual summary statistics were especially helpful 
for identifying the measurement noise parameters. Payoff values 
(see Table 4) in baseline and optimized runs also point to room 
for improvement, as best payoffs would go below zero and are 
often smaller with larger numbers of parameters. Nevertheless, 

the trained networks start to offer useful inference outcomes for 
SEIRb with just 40 k simulations and an hour of training.

6   |   Discussion

In this paper, we introduced the emerging neural network-
based estimation methods for system dynamics practitioners. 
Just as people can do an impressive job of hand calibration by 

FIGURE 12    |    Inference using 1000 different synthetic datasets from the SEIRb model, including the (a) estimated parameter against the ground 
truth, (b) fraction of ground truth parameters that fall within different (centered) percentiles of posteriors, and (c) posterior contraction against pos-
terior Z-score.

(a)

(b)

(c)
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observing a few simulations (Lyneis and Pugh 1996), neural net-
works can learn to associate different parameter combinations 
with different model behaviors to estimate model parameters 
and CIs. Focusing on ABI using NPE methods with estab-
lished tools, we found that the parameters of simple to mod-
erately complex system dynamics models could be effectively 
estimated in an amortized fashion. Using standard validation 
methods spanning SBC, recovery plots, CI inclusion fractions, 
posterior z-scores, and posterior contraction, we validate our in-
ference procedure. The amortized nature of estimation enables 
straightforward validation of the method for any application 
and reduces computational costs when repetitions of estimation 
for different subjects, datasets, and so forth, are likely.

Much of this estimation machinery can be hidden from the 
typical user who can use the default hyperparameters and sim-
ple to use packages. Nevertheless, a few practical suggestions 
include:

–	 Having two to four times more summary statistics than 
parameters seems helpful. More summary statistics add 
little computational costs but may push models to overfit 
uninformative features of training data.

–	 Some parameters are identified with orders of magnitude 
less data and training than others. Identifying both pro-
cess and measurement noise, especially the former, could 
be complex and require much data. So, one may be com-
fortable halting inference early if the identification of noise 
parameters was not of primary concern.

–	 Manual summary statistics are valuable and can speed 
up inference notably, especially for noise parameters. We 
found the covariance matrix for data residuals (compared 
to a de-noised mean tracker, e.g., Savitzky–Golay filter) 
against the lagged version of themselves and other data se-
ries as a helpful and generalizable summary statistic.

FIGURE 13    |    Empirical cumulative distribution functions (ECDF) of rank statistics for SEIRb model.

FIGURE 14    |    Recovery and SBC plots for Random Walk from the optimized run.

 10991727, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1798 by N

orthshore M
edical C

enter, W
iley O

nline L
ibrary on [29/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



21 of 24

–	 Bidirectional (rather than unidirectional) LSTM networks, 
by looking backward at data, are better at inferring initial 
conditions for stocks.

–	 Batch sizes of 16–64 and a learning rate of 0.001 seemed to 
be generally a good choice.

–	 Other hyperparameters may require problem-specific tun-
ing: LSTM units (64 is a good starting point), number of 
inference layers (5–8 for simpler to more complex models), 
and convolutional layers for a sequential summary net-
work (e.g., 3–4 layers, though their value was less salient).

–	 We found limited impact from normalizing parameters or 
log-transforming the data, but they may prove helpful when 
parameter ranges and model outputs are more varied.

This paper only provides an entry into the space, and several 
important questions remain. First, we do not know whether the 
estimated results are “efficient” (offering the tightest possible distri-
bution of posteriors). SBC does not inform this question accurately. 
Therefore, testing efficiency on models with available likelihood-
based estimation methods would be a valuable extension.

Scalability is another key question: Would this method work 
for typical system dynamics applications? Total computational 
costs in our ABI inference examples vary from a few minutes 
(for the Random Walk toy model) to a few hours for the SEIRb 

example. Better hardware can help. For example, we see 2–4 
times savings moving from a desktop without GPUs to a sim-
ilarly priced desktop with GPUs for NN training. Much of the 
computation is due to the NN training step: simulation time 
for sufficient sample sizes of 104 − 105 takes a few seconds to 
complete when parallelized and compiled. For rather complex 
system dynamics models, 106 − 107 simulations may be feasi-
ble, even easy, suggesting that the computational bottleneck 
currently remains with the NN training side, though memory 
constraints can also become problematic with large offline 
datasets.

Overall, the current machinery would allow for estimating 
typical system dynamics models in an amortized fashion 
with around two dozen parameters; for example, see (Radev 
et al. 2021). If one foregoes ABI and instead uses sequential NPE 
or NRE methods, computational costs could be cut further by an 
order of magnitude for estimating a single dataset. Some of those 
methods are built into a different package, SBI. Using good man-
ual summary statistics also speeds up inference notably because 
they allow the posterior network to be trained from the outset; 
designing generic informative summary stats for dynamic mod-
els is promising. Scalability is not just about the number of pa-
rameters but also relates to the (often unknown) shape of the 
posterior distribution. Creating a larger number of test models 
with different parameter counts, reference modes, and noise 

FIGURE 15    |    Recovery and SBC plots for SEIRb from the optimized run.
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structures and conducting continuous benchmarking research 
on that set would inform the scalability problem more precisely.

Another fruitful area is the comparison and expansion of model 
appropriateness measures. Prediction quality informs one set 
of these tests from simple fit measures (e.g., Root Mean Square 
Error [RMSE] and Mean Absolute Percentage Error [MAPE]) to 
complexity-adjusted ones (e.g., Akaike and Bayesian Information 
Criterion [AIC and BIC]). Out-of-sample predictive power (e.g., 
K-fold validation) is also used extensively. Another promising 
direction is the application of summary statistics, simulated 
vs. empirical, to assess the quality of the model in light of the 
data at hand (Gretton et al. 2012; Schmitt et al. 2022). Such tests 
inform a model's external validity (how close the model struc-
ture is to the true data generating process) and whether it has 
room for improvement. That would be a key additional input for 
an iterative model enhancement process. Nevertheless, even if 
we get an aggregate signal for weak external validity, the task 
of identifying the specific structural weaknesses in the model 
remains complex and should rely on engaging evidence from 
prior research, various stakeholders, and subject matter experts. 
Bridging the quantitative model testing approaches and these 
qualitative sources remains a key area for future contributions.

Another area for further exploration is the better integration 
of hierarchical models with the ABI machinery. For example, 
in modeling COVID-19, models for different countries may 
include the same “structure” but parameters that vary across 
countries and are potentially interrelated, creating a “hierar-
chical” architecture for model parameters. While ABI machin-
ery already includes hierarchical estimation, this machinery 
may not be efficient if “driving data” (e.g., data inputs into the 
model) are different across different units. Efficient incorpora-
tion of driving data into inference so that inference costs scale 
sub-linearly with the number of units would be a valuable 
contribution.

Finally, transparency is critical for trust and adoption. It re-
quires documentation of the modeling and estimation process, 
the assumptions made, the choice of neural network architec-
tures, and the rationale for selecting specific hyperparameters. 
Sharing fully documented code and providing tested packages 
that bridge evolving estimation tools with system dynamics sim-
ulation software would prove valuable, and we hope this paper 
takes a first step in that direction.

More broadly, the field is rapidly evolving, with new methods 
and improvements emerging regularly. Packages that implement 
state-of-the-art methods (e.g., BayesFlow and Simulated-Based 
Inference, SBI) are critical for disseminating best practices, and 
bridging user communities with the evolving tools requires con-
tinued tool and bridge building. Our work takes a small step in 
that direction, but much more research is needed. The emerg-
ing tools can already solve some of the thorny estimation chal-
lenges the system dynamics community has dealt with (or was 
forced to side-step), and future breakthroughs in this space may 
ultimately ‘solve’ the estimation problem. This field thus offers 
exciting opportunities for researchers dedicated to refining and 
advancing the integration of quantitative data with nuanced and 
rich models system dynamics is best known for.
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Endnotes

	1	A notable exception to this statement is the use of Variational Inference 
(Blei, Kucukelbir, and McAuliffe 2017) methods which scale well but 
approximate the posterior distribution using a proxy distribution (e.g., 
Gaussian) and thus may not be appropriate for more complex posterior 
shapes.

	2	Perceived risk is regulated by the measured (rather than true) deaths. 
Thus, it is technically more precise to consider SDD to be impacted by 
a process noise because it feeds back into model dynamics, yet we use 
the more intuitive “measurement” label.
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