
https://doi.org/10.1177/00333549241299613

Public Health Reports
 1 –6

© 2024, Association of Schools and
Programs of Public Health

All rights reserved.

Article reuse guidelines: 
sagepub.com/journals-permissions

DOI: 10.1177/00333549241299613
journals.sagepub.com/home/phr

Public Health Methodology

During the past 2 decades, the United States has experienced 
an increase in drug overdose deaths.1 To analyze trends in 
overdose deaths, yearly rolling aggregate trends or rates are 
commonly used.2,3 These methods are particularly useful to 
provide a broad view of trends over time.3 Public health pol-
icy and decision makers may use these data to identify long-
term patterns, evaluate the effectiveness of ongoing 
interventions, and strategize resource allocation.

While these aggregate trends are invaluable for under-
standing long-term changes, focusing solely on these general 
trends can obscure short-term fluctuations (eg, daily spikes).2 
Such fluctuations are crucial to assess because the risk of an 
overdose death may change substantially during a short 
period (eg, a few days or a week). For instance, emergency 

responders often report that periods of calm are followed by 
a sudden rise, or spike, in overdoses.4 Similarly, law enforce-
ment officers report waves of overdose service calls, respond-
ing to several calls in a single week after periods of quiet.5 
These spikes could be linked to multiple factors, such as 
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Abstract

Objectives: Yearly rolling aggregate trends or rates are commonly used to analyze trends in overdose deaths, but focusing 
on long-term trends can obscure short-term fluctuations (eg, daily spikes). We analyzed data on spikes in daily fatal overdoses 
and how various spike detection thresholds influence the identification of spikes.

Materials and Methods: We used a spike detection algorithm to identify spikes among 16 660 drug-related overdose 
deaths (from any drug) reported in Massachusetts’ vital statistics from 2017 through 2023. We adjusted the parameters of 
the algorithm to define spikes in 3 distinct scenarios: deaths exceeding 2 adjusted moving SDs above the 7-, 30-, and 90-day 
adjusted moving average.

Results: Our results confirmed the on-the-ground observation that there are days when many more people die of overdoses 
than would be expected based on fluctuations due to differences among people alone. We identified spikes on 5.8% to 20.6% 
of the days across the 3 scenarios, annually, constituting 11.1% to 31.6% of all overdose deaths. The absolute difference in 
percentage points of days identified as spikes varied from 5.2 to 11.5 between 7- and 30-day lags and from 0 to 4.6 between 
30- and 90-day lags across years. When compared with the adjusted moving average across the 3 scenarios, in 2017 an 
average of 3.9 to 5.5 additional deaths occurred on spike days, while in 2023 the range was 3.7 to 6.0.

Practice Implications: A substantial percentage of deaths occurred annually on spike days, highlighting the need for 
effectively monitoring short-term overdose trends. Moreover, our study serves as a foundational analysis for future research 
into exogenous events that may contribute to spikes in overdose deaths, aiming to prevent future deaths.
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changes in the drug supply and in access to pain medications 
and mental health services, among others.6 Thus, neglecting 
to investigate overdose death data at a more granular level to 
identify any spikes may result in missed opportunities for 
interventions that could prevent future deaths.

Many jurisdictions have engaged with key partners—
including public health, law enforcement, emergency medi-
cal services, and people who use drugs—to respond 
effectively to overdose spikes.7 However, the definition of an 
overdose spike lacks universal consensus.8 It may be charac-
terized by a sudden increase in deaths, even if they are not 
the highest recorded, or by more conspicuous rises. 
Differences across jurisdictions may be influenced by factors 
such as differences in partner perspectives, the data used, and 
unique trends in local drugs (eg, frequency of fentanyl-laced 
heroin).7 For example, the Rhode Island Department of 
Public Health historically defined spikes as the number of 
suspected nonfatal opioid overdoses in a week that surpassed 
2 SDs above the weekly average in the past year’s data.9 
Meanwhile, many counties have identified spikes based on 
the number of deaths within a 24-hour period that exceed a 
set absolute count10-12 or 2 SDs above a 90-day moving aver-
age.13 Furthermore, to anticipate overdose trends, research-
ers have, for example, developed predictive models to 
analyze drug overdose deaths in the upcoming week by using 
a 7-day lag period and setting a threshold at 1 SD above the 
mean for simplicity and interpretability.14 Although different 
mechanisms are used to identify spikes, the rationale for the 
thresholds that define these spikes is often undocumented. 
Consequently, a need exists to examine how differing thresh-
olds may affect the identification of spikes.

In this analysis, we used a robust spike detection algo-
rithm to investigate the frequency, volume, and characteris-
tics of spikes in daily fatal overdose data. We analyzed 
state-level mortality data from Massachusetts to identify 
spikes. Additionally, we demonstrated how varying the 
parameters of our algorithm affects the detection of spikes, 
underscoring the need for careful consideration when choos-
ing spike-detection strategies. The findings illustrate the 
critical share of spike days in overall overdose data and may 
guide public health partners in understanding the nuances of 
spike detection to assist them in making informed decisions 
for monitoring overdose trends.

Materials and Methods

We obtained individual-level mortality data from January 1, 
2017, through December 31, 2023, from the Massachusetts 
Registry of Vital Records and Statistics. The causes of death 
are coded per the International Classification of Diseases, 
10th Revision.15 Accordingly, we extracted data for all fatal 
drug overdoses defined by underlying cause-of-death codes 
for poisoning by drugs, medicaments, and biological sub-
stances through any intent (not inclusive to poisoning by or 
exposure to alcohol), aligning with the methods used in 

reports by the Centers for Disease Control and Prevention16,17 
and previous studies on drug overdose deaths18,19: X40-X44 
(unintentional), X60-X64 (suicide), X85 (homicide), and 
Y10-Y14 (undetermined). Then, we aggregated the data to 
obtain daily counts of overdose deaths. The Mass General 
Brigham Institutional Review Board (protocol 2021P003355) 
exempted the study from review and waived informed con-
sent because no human subjects were involved; data were not 
obtained through participant interaction.

To identify days with spikes in overdose deaths, we lever-
aged a spike detection algorithm based on z scores that func-
tions as a data-monitoring tool, designed to identify signals 
or, in other words, deviations from the established patterns 
within a dataset.20 Researchers have used this algorithm for 
various applications, such as identifying peaks in steps and 
heartbeat data21 and pinpointing key moments in a person’s 
walking pattern.22 The algorithm’s robustness lies in its abil-
ity to dynamically construct moving averages and SDs, 
ensuring that the detection threshold is not unduly affected 
by previously detected signals. The involved parameters that 
define the identification of spikes, including the lag, SD, and 
influence, may be selected heuristically.

Namely, the lag is the moving window where the algo-
rithm calculates the rolling average and SD of historical data 
(eg, the number of periods considered). A longer window 
encompasses a more extensive set of historical data, provid-
ing a broader perspective. In contrast, a shorter window offers 
greater sensitivity, enabling quicker adaptation to new trends 
or information shifts. The SD parameter, defined as the z 
score, is used to signal when the distance between a data point 
and the rolling average exceeds this parameter multiplied by 
the rolling SD. Lastly, the influence parameter, ranging from 
0 to 1, regulates the effect of signals on the calculation of 
subsequent rolling averages and SDs: a value of 0 excludes 
signals from these calculations, while a value of 1 treats all 
data points equally, fully integrating signals into rolling cal-
culations. We did not want dips to heavily influence the detec-
tion of subsequent spikes, so we treated spikes and dips as 
signals with an influence value <1; ultimately, however, our 
focus was solely on identifying spikes. Additionally, we mod-
ified the original algorithm so that the lagged variable at any 
given day was calculated by the values from the days leading 
up to, but not including, the current date.

All 3 parameters of the algorithm can alter the detection 
of spikes. In the primary analysis, we focused on 3 scenarios 
with varying lag values of 7, 30, and 90 days with a fixed SD 
of 2 as illustrative examples, which covers the commonly 
used lag periods reported in existing reports and litera-
ture.9,13,14 We set the influence parameter at 0.3 based on 
visual analysis. After the spike detection, we quantified the 
characteristics of the spikes by analyzing the percentage of 
days identified as spikes, the percentage of deaths occurring 
in spikes, and the average difference in deaths occurring in 
spikes and the corresponding adjusted moving average, 
yearly.
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For a sensitivity analysis, we assessed a wider parameter 
range of lags (7-180 d) and SDs (2-3). Additionally, we eval-
uated how spike identification varied across influence values 
(range, 0.1-0.9), maintaining a lag of 30 days and an SD of 2. 
We used RStudio from R version 4.3.1 (R Core Team) to 
analyze the data, and the code for analysis and visualization 
is available in the Supplement.

Results

We analyzed data on 16 660 overdose deaths, with the aver-
age number of daily deaths ranging from 6.1 in 2017 to 6.5 in 
2023. Among these deaths, 71.6% were male, and the median 
(IQR) age was 42 (33-54) years. A shorter lag value was 
associated with higher fluctuations in the moving average 
and SD, therefore affecting the number and timing of the 
detected spikes. However, the frequency of spikes and the 
lag value did not necessarily follow a monotonic trend. The 
spikes differed across the 3 scenarios for the last 2 months of 
2022 in Massachusetts (Figure). In this period, we identified 
16 spikes in the first scenario (7-day lag). The second sce-
nario (30-day lag) and the third (90-day lag) had 2 consistent 
spikes, with one of the spikes not being identified in the first 
scenario.

Across the 3 scenarios, we identified 5.8% to 20.6% of 
days as spikes in deaths annually, constituting 11.1% to 
31.6% of all overdose deaths (Table 1). Spike identification 
generally varied more noticeably between shorter and longer 
lag periods (eg, 7-day lag vs 30- or 90-day lag), with this 
variability being less apparent between increasing lag dura-
tions (eg, 30- and 90-day lags). For example, the absolute 
difference in the percentage points of total days identified as 

spikes between the 7- and 30-day lags ranged from 5.2 (in 
2017) to 11.5 (in 2022) across the years. In contrast, the 
absolute difference between the 30- and 90-day lags ranged 
from 0 (in 2021) to 4.6 (in 2023). When examining the trends 
during the study period, we did not observe a clear pattern in 
the first and second scenarios for the percentage of days 
identified as spikes or the percentage of deaths occurring on 
spikes. However, in the third scenario, we observed lower 
percentages in 2023 as compared with the earlier years in our 
study period, with 5.8% of days as spikes and 11.1% total 
overdose deaths. Furthermore, when examining the average 
excess number of deaths on spike days, we observed a gen-
eral increasing trend with longer lag periods. For example, in 
2023, an average of 3.7 more deaths occurred on spike days 
with a 7-day lag as compared with 6.0 more deaths with a 
90-day lag.

The results of the sensitivity analysis were similar overall 
to the findings of our 3 scenarios. The comparison of lower 
parameter values (the lag, SD, or influence) resulted in dif-
ferent identification of spikes. However, as the parameter 
value increased, the differences in the identified spikes 
became progressively less pronounced (Table 2 and eTables 
1 and 2 in the Supplement). Specifically, when 2 and 3 SDs 
were compared, the absolute difference in days identified as 
spikes was 14.7 percentage points for a 7-day lag, as opposed 
to 6.3 percentage points for a 180-day lag (Table 2).

Discussion

We assessed fatal overdose data to identify daily spikes in 
deaths and to characterize their frequency and the number of 
excess deaths in Massachusetts. Using a spike detection 

Figure. Time-series daily overdose death data and detected spikes in Massachusetts for the last 2 months of 2022 with the adjusted 
moving average and a detection threshold of 2 adjusted SDs above the adjusted moving average across varying lags.
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algorithm, we found that varying the parameters that define a 
spike greatly changes its identification. Greater lag values 
primarily led to the detection of spikes in days with conspic-
uously high death counts, whereas lower lag values identi-
fied these spikes in addition to more abrupt increases in 
deaths that were not as immediately obvious in the time-
series data. As the values of the parameters (ie, the lag, 
threshold, or influence) increased, the variations between the 
identified spikes became less apparent.

Regardless of the parameters used, the identification of 
spikes in Massachusetts indicates that on certain days, the 
number of overdose deaths substantially exceeds what would 
be expected solely from day-to-day fluctuations due to varia-
tions among people. This finding suggests the broader pres-
ence of factors affecting the entire population of people who 
use drugs, such as changes in the drug supply, particularly if 
illicit substances were involved in the deaths that constitute 
spikes.6 Our findings suggest that the magnitude of spikes 
generally increased during the study period, regardless of the 

chosen parameters. Additionally, a notable percentage of 
deaths occurred annually on the days identified as spikes.

This study contributes to the literature by analyzing varia-
tions in spike identification, using an algorithm with a wide 
range of commonly used parameter values. Our findings may 
help public health partners make informed decisions when 
analyzing trends in overdose deaths, as rapid responses to 
spikes are crucial. In Rhode Island, relevant proactive mea-
sures include the implementation of a spike detection strat-
egy based on rapidly collected nonfatal overdose data to 
respond to spike alerts with resources such as naloxone and 
recovery services, and these may have contributed to the 
8.3% reduction in opioid overdose deaths from 2016 to 
2019.9 Furthermore, considering that we identified spikes in 
up to one-fifth of all days annually in Massachusetts (20.6%; 
year 2018 with a 7-day lag), our findings may help adjust the 
method of spike detection to align response capabilities with 
the frequency of spike alerts. Using spike alerts selectively 
can prevent communities from becoming desensitized to 

Table 1. Comparison of annual spikes in drug overdose deaths in Massachusetts across lag values, 2017 through 2023

Year

Lag: statistic 2017 2018 2019 2020 2021 2022 2023

7 d  
 Total days identified as spikes, % 17.0 20.6 18.1 18.0 18.4 19.2 18.1
 Total deaths occurring on spikes, % 28.0 31.6 28.1 27.9 28.1 28.7 28.3
 No. of excess deaths on spikes, average 3.9 3.8 3.5 3.7 4.2 3.9 3.7
30 d  
 Total days identified as spikes, % 11.8 9.6 8.0 10.1 7.7 7.7 10.4
 Total deaths occurring on spikes, % 20.4 17.0 13.8 17.7 13.7 13.5 17.9
 No. of excess deaths on spikes, average 4.9 5.2 4.6 4.7 5.9 5.7 5.1
90 d  
 Total days identified as spikes, % 9.6 8.0 6.8 7.1 7.7 8.8 5.8
 Total deaths occurring on spikes, % 17.4 14.5 12.1 13.0 13.9 15.3 11.1
 No. of excess deaths on spikes, average 5.5 5.3 4.9 5.3 6.2 5.7 6.0

Table 2. Sensitivity analysis across varying lag and SD parameters of the percentage of days identified as spikes in drug overdose deaths 
in Massachusetts, 2017 through 2023

Total days identified as spikes by lag, %

SD 7 d 15 d 30 d 60 d 90 d 120 d 150 d 180 d

2.0 18.4 11.4 9.1 6.9 7.0 6.4 6.3 6.8
2.1 15.9 9.2 6.9 5.5 5.8 5.5 5.6 5.6
2.2 12.8 7.7 5.9 4.5 4.6 4.2 4.6 4.2
2.3 10.5 6.3 4.5 4.0 3.4 3.1 2.9 3.0
2.4 8.8 5.5 4.1 2.9 2.5 2.5 2.5 2.5
2.5 6.7 4.9 2.5 2.4 2.2 2.1 2.0 2.3
2.6 5.8 3.8 2.0 2.0 1.8 1.6 1.4 1.4
2.7 4.5 3.3 1.5 1.8 1.5 1.4 1.2 1.1
2.8 4.2 2.7 1.2 1.2 1.3 1.1 1.1 1.0
2.9 4.1 1.8 0.9 0.7 0.9 0.8 0.7 0.7
3.0 3.7 1.3 0.8 0.7 0.5 0.6 0.6 0.5
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warnings, avoiding the pitfalls of constant emergency alerts 
such as burnout and reduced engagement with outreach staff. 
Such a selective approach ensures effective mobilization for 
response when truly necessary. Lastly, our analysis may 
guide future research into the factors driving these spikes, 
thereby assisting policy makers in more efficacious resource 
allocation.23

This study had several limitations. First, it relied exclu-
sively on state-level data from Massachusetts only, limiting 
the generalizability of our findings about spikes to other 
regions, including localized regions in the state. Detailed 
analysis at the county or town level would be beneficial, as 
state-level data offer limited utility in enhancing public 
health practices or the intervention capabilities of commu-
nity organizations. Second, our focus on fatal overdose data 
excluded other relevant datasets, such as those with data on 
nonfatal overdoses or naloxone administration, which could 
provide additional insights into spikes. The delay in finaliz-
ing fatal overdose data, ranging from 3 or 4 months in 
Massachusetts to often longer in other states,18 renders these 
data impractical for timely responses to spikes, unlike near–
real-time overdose surveillance data as used by states such as 
Rhode Island.9 A third limitation was the inclusion of all fatal 
overdoses, regardless of intent—whether unintentional, sui-
cide, homicide, or undetermined—which will require differ-
ent intervention strategies. For example, harm reduction 
efforts aiming to reduce unintentional overdoses could be 
different from those addressing overdoses resulting from sui-
cide or homicide. Future analyses that distinguish overdoses 
by intent could help guide more tailored interventions. 
Fourth, our analysis did not differentiate among the various 
substances involved in the overdoses, which restricts our 
understanding of the contributing factors to spikes. However, 
studying patterns in drug-related fatal overdoses (from any 
drug) remains crucial for public health professionals and 
policy makers, as it confirms the existence of spikes and 
underscores the need for strategic resource allocation to pre-
vent future deaths. Finally, the absence of a clear definition 
of a spike prevented us from claiming that the occurrences 
that we identified met the criteria of true spikes. Therefore, 
we cannot conclusively assess whether the algorithm that we 
used represents a superior alternative to other methods. 
Nonetheless, our approach has effectively narrowed the pool 
of potential spikes, providing a focused dataset for further 
analysis.

Practice Implications

Our findings may provide insights for public health partners 
in defining and monitoring spikes in fatal overdose data. We 
underscore the urgent need to investigate overdose death 
data at the granular level to uncover potential factors contrib-
uting to spikes in drug overdose deaths. Identifying these 
factors may reduce deaths, given their disproportionate 
occurrence on days identified as spikes. Future research 

should investigate exogenous events that may contribute to 
these sudden increases in overdose deaths. For example, 
changes in the drug supply may suggest supply-targeted pre-
vention efforts. Any geographic patterns or drug involve-
ment should also be examined. Such investigations can help 
public health decision makers and policy makers effectively 
allocate resources and prevent future overdose deaths.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect 
to the research, authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support for 
the research, authorship, and/or publication of this article: This 
work was supported in part by grant R01CE003358 from the 
Centers for Disease Control and Prevention (CDC). This article 
reflects the views of the authors and does not represent the views or 
policies of CDC or the US Department of Health and Human 
Services.

ORCID iDs

Hannah Lee, BS  https://orcid.org/0009-0006-8803-0694

Daniel Otero-Leon, PhD  https://orcid.org/0000-0003-2404- 
1635

Mohammad S. Jalali, PhD  https://orcid.org/0000-0001-6769- 
2732

Supplemental Material

Supplemental material for this article is available online. The 
authors have provided these supplemental materials to give readers 
additional information about their work. These materials have not 
been edited or formatted by Public Health Reports’s scientific edi-
tors and, thus, may not conform to the guidelines of the AMA 
Manual of Style, 11th Edition.

References

 1. Spencer MR, Miniño AM, Warner M. Drug overdose deaths in 
the United States, 2001-2021. NCHS Data Brief. 2022;457:1-8. 
doi:10.15620/cdc:122556

 2. Friedman J, Akre S. COVID-19 and the drug overdose crisis: 
uncovering the deadliest months in the United States, January‒
July 2020. Am J Public Health. 2021;111(7):1284-1291. 
doi:10.2105/AJPH.2021.306256

 3. Fujita-Imazu S, Xie J, Dhungel B, et al. Evolving trends in 
drug overdose mortality in the USA from 2000 to 2020: an age-
period-cohort analysis. EClinicalMedicine. 2023;61:102079. 
doi:10.1016/j.eclinm.2023.102079

 4. Cuda A. Emergency responders fighting hard against over-
dose deaths. Stratford Emergency Medical Service. February 
7, 2016. Accessed May 28, 2024. https://www.stratfordems.
org/2016/02/07/emergency-responders-fighting-hard-over-
dose-deaths

 5. Smiley-McDonald HM, Attaway PR, Richardson NJ,  
Davidson PJ, Kral AH. Perspectives from law enforcement offi-
cers who respond to overdose calls for service and administer 

https://orcid.org/0009-0006-8803-0694
https://orcid.org/0000-0003-2404-1635
https://orcid.org/0000-0003-2404-1635
https://orcid.org/0000-0001-6769-2732
https://orcid.org/0000-0001-6769-2732
https://www.stratfordems.org/2016/02/07/emergency-responders-fighting-hard-overdose-deaths
https://www.stratfordems.org/2016/02/07/emergency-responders-fighting-hard-overdose-deaths
https://www.stratfordems.org/2016/02/07/emergency-responders-fighting-hard-overdose-deaths


6 Public Health Reports 00(0)

naloxone. Health Justice. 2022;10(1):9. doi:10.1186/s40352-
022-00172-y

 6. National Association of County & City Health Officials. 
Overdose spike response framework for communities and 
local health departments. June 2021. Accessed April 27, 2024. 
https://www.naccho.org/uploads/full-width-images/overdose-
spike-response-framework-for-communities-lhds-1.pdf

 7. Washington/Baltimore High Intensity Drug Trafficking Areas. 
Overdose spike response framework. 2018. Accessed April 
27, 2024. https://www.hidta.org/wp-content/uploads/2018/04/
ODMap-Overdose-Response-Framework-2018-3.29.18.pdf

 8. Association of State and Territorial Health Officials. 
Responding to an overdose spike: a guide for state health 
departments. June 2020. Accessed May 26, 2024. https://www.
astho.org/globalassets/pdf/overdose-spike-guide.pdf

 9. Hallowell BD, Lasher L, Chambers LC, et al. Using timely 
overdose data to address a spike in nonfatal overdoses and 
inform a coordinated community-level response in Rhode 
Island, 2019. Public Health Rep. 2021;136(1):24S-30S. 
doi:10.1177/00333549211012407

 10. Ocean County Health Department. Ocean County overdose 
response plan 2021-2022. 2021. Accessed April 28, 2024. 
https://www.ochd.org/wp-content/uploads/2021/12/Ocean-
County-Overdose-Response-Plan.pdf

 11. Connecticut Department of Public Health, Office of Emergency 
Medical Services. Statewide Opioid Reporting Directive 
(SWORD) 2020 annual report: June 2019–May 2020. 2020. 
Accessed April 28, 2024. https://portal.ct.gov/-/media/depart 
ments-and-agencies/dph/dph/ems/pdf/sword/sword-
newsletters/2020/20200812-sword-annual-reportfinal.pdf

 12. Oneida County Opioid Task Force. A brief: putting data to 
action. October 2022. Accessed April 27, 2024. https://www.
cossup.org/Content/Documents/Publications/Oneida_County_
Opioid_Task_Force_Data_to_Action_Brief.pdf

 13. Alter A, Yeager C. The consequences of COVID-19 on the 
epidemic: overdoses are increasing. Washington/Baltimore 
high intensity drug trafficking areas. May 13, 2020. Accessed 
April 29, 2024. https://www.odmap.org:4443/Content/docs/
news/2020/ODMAP-Report-May-2020.pdf

 14. Mukherjee S, Becker N, Weeks W, Ferres JL. Using inter-
net search trends to forecast short term drug overdose 

deaths: a case study on Connecticut. Paper presented at: 19th 
IEEE International Conference on Machine Learning and 
Applications; December 14-17, 2020; online. doi:10.1109/
ICMLA51294.2020.00208

 15. World Health Organization. International Statistical 
Classification of Diseases and Related Health Problems, 
10th Revision (ICD-10). 5th ed. World Health Organization; 
2016.

 16. Mattson CL, Tanz LJ, Quinn K, Kariisa M, Patel P, Davis NL. 
Trends and geographic patterns in drug and synthetic opioid 
overdose deaths—United States, 2013-2019. MMWR Morb 
Mortal Wkly Rep. 2023;70(6):202-207. doi:10.15585/MMWR.
MM7006A4

 17. Ahmad FB, Cisewski JA, Rossen LM, Sutton P. Provisional 
Drug Overdose Death Counts. National Center for Health 
Statistics; 2024.

 18. DiGennaro C, Garcia G-GP, Stringfellow EJ, Wakeman S, 
Jalali MS. Changes in characteristics of drug overdose death 
trends during the COVID-19 pandemic. Int J Drug Policy. 
2021;98:103392. doi:10.1016/J.DRUGPO.2021.103392

 19. Friedman J, Shover CL. Charting the fourth wave: geo-
graphic, temporal, race/ethnicity and demographic trends in 
polysubstance fentanyl overdose deaths in the United States, 
2010-2021. Addiction. 2023;118(12):2477-2485. doi:10.1111/
ADD.16318

 20. van Brakel JPG. Robust Peak Detection Algorithm Using 
Z-Scores. Stack Overflow; 2014. Accessed December 14, 
2023. https://stackoverflow.com/questions/22583391/peak-
signal-detection-in-realtime-timeseries-data

 21. Rykov Y, Thach T-Q, Bojic I, Christopoulos G, Car J. Digital 
biomarkers for depression screening with wearable devices: 
cross-sectional study with machine learning modeling. JMIR 
Mhealth Uhealth. 2021;9(10):e24872. doi:10.2196/24872

 22. Kim M, Hargrove LJ. A gait phase prediction model trained 
on benchmark datasets for evaluating a controller for pros-
thetic legs. Front Neurorobot. 2023;16:1064313. doi:10.3389/
fnbot.2022.1064313

 23. Williams KE, Freeman MD, Mirigian L. Drug overdose sur-
veillance and information sharing via a public database: the 
role of the medical examiner/coroner. Acad Forensic Pathol. 
2017;7(1):60-72. doi:10.23907/2017.007

https://www.naccho.org/uploads/full-width-images/overdose-spike-response-framework-for-communities-lhds-1.pdf
https://www.naccho.org/uploads/full-width-images/overdose-spike-response-framework-for-communities-lhds-1.pdf
https://www.hidta.org/wp-content/uploads/2018/04/ODMap-Overdose-Response-Framework-2018-3.29.18.pdf
https://www.hidta.org/wp-content/uploads/2018/04/ODMap-Overdose-Response-Framework-2018-3.29.18.pdf
https://www.astho.org/globalassets/pdf/overdose-spike-guide.pdf
https://www.astho.org/globalassets/pdf/overdose-spike-guide.pdf
https://www.ochd.org/wp-content/uploads/2021/12/Ocean-County-Overdose-Response-Plan.pdf
https://www.ochd.org/wp-content/uploads/2021/12/Ocean-County-Overdose-Response-Plan.pdf
https://portal.ct.gov/-/media/departments-and-agencies/dph/dph/ems/pdf/sword/sword-newsletters/2020/20200812-sword-annual-reportfinal.pdf
https://portal.ct.gov/-/media/departments-and-agencies/dph/dph/ems/pdf/sword/sword-newsletters/2020/20200812-sword-annual-reportfinal.pdf
https://portal.ct.gov/-/media/departments-and-agencies/dph/dph/ems/pdf/sword/sword-newsletters/2020/20200812-sword-annual-reportfinal.pdf
https://www.cossup.org/Content/Documents/Publications/Oneida_County_Opioid_Task_Force_Data_to_Action_Brief.pdf
https://www.cossup.org/Content/Documents/Publications/Oneida_County_Opioid_Task_Force_Data_to_Action_Brief.pdf
https://www.cossup.org/Content/Documents/Publications/Oneida_County_Opioid_Task_Force_Data_to_Action_Brief.pdf
https://www.odmap.org:4443/Content/docs/news/2020/ODMAP-Report-May-2020.pdf
https://www.odmap.org:4443/Content/docs/news/2020/ODMAP-Report-May-2020.pdf
https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data
https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data

