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Weather, air pollution, and SARS-CoV-2 transmission: 
a global analysis
Ran Xu*, Hazhir Rahmandad*, Marichi Gupta, Catherine DiGennaro, Navid Ghaffarzadegan, Heresh Amini, Mohammad S Jalali

Summary
Background Understanding how environmental factors affect SARS-CoV-2 transmission could inform global 
containment efforts. Despite high scientific and public interest and multiple research reports, there is currently no 
consensus on the association of environmental factors and SARS-CoV-2 transmission. To address this research gap, 
we aimed to assess the relative risk of transmission associated with weather conditions and ambient air pollution.

Methods In this global analysis, we adjusted for the delay between infection and detection, estimated the daily 
reproduction number at 3739 global locations during the COVID-19 pandemic up until late April, 2020, and 
investigated its associations with daily local weather conditions (ie, temperature, humidity, precipitation, snowfall, 
moon illumination, sunlight hours, ultraviolet index, cloud cover, wind speed and direction, and pressure data) and 
ambient air pollution (ie, PM2·5, nitrogen dioxide, ozone, and sulphur dioxide). To account for other confounding 
factors, we included both location-specific fixed effects and trends, controlling for between-location differences and 
heterogeneities in locations’ responses over time. We built confidence in our estimations through synthetic data, 
robustness, and sensitivity analyses, and provided year-round global projections for weather-related risk of global 
SARS-CoV-2 transmission.

Findings Our dataset included data collected between Dec 12, 2019, and April 22, 2020. Several weather variables and 
ambient air pollution were associated with the spread of SARS-CoV-2 across 3739 global locations. We found a 
moderate, negative relationship between the estimated reproduction number and temperatures warmer than 25°C  
(a decrease of 3·7% [95% CI 1·9–5·4] per additional degree), a U-shaped relationship with outdoor ultraviolet 
exposure, and weaker positive associations with air pressure, wind speed, precipitation, diurnal temperature, 
sulphur dioxide, and ozone. Results were robust to multiple assumptions. Independent research building on our 
estimates provides strong support for the resulting projections across nations.

Interpretation Warmer temperature and moderate outdoor ultraviolet exposure result in a slight reduction in the 
transmission of SARS-CoV-2; however, changes in weather or air pollution alone are not enough to contain the spread 
of SARS-CoV-2 with other factors having greater effects.

Funding None.

Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
The COVID-19 pandemic has greatly challenged the global 
community. High-stake policy decisions depend on how 
environmental factors affect the transmission of the 
disease.1 Given that many related viral infections such as 
seasonal influenza,2 MERS-CoV,3 and SARS-CoV4 show 
notable seasonality, it might be expected that the trans
mission of SARS-CoV-2 is similarly dependent on weather. 
Earlier works indicate that temperature,5 humidity,6 air 
pressure, ultraviolet exposure, and precipitation could affect 
the spread of SARS-CoV-2 by changing the virus survival 
times on surfaces and in droplets,7,8 moderating the distance 
virions can travel through air,8 changing host susceptibility, 
and affecting individual activity patterns and immune 
systems.7,8 A few other studies suggest air pollutants could 
act as vectors for the virus or affect the immune system.9,10 
Yet, there is poor agreement on the shape and magnitude of 
these relationships.

Although some studies have found associations between 
pandemic severity and variations in temperature,6,11–17 
relative and absolute humidity,6,11–14,16–19 ultraviolet,16 wind 
speed,12 visibility, and precipitation,11 others20,21 indicate 
weaker, inconsistent, or no relationships. A 2020 review 
found inconclusive evidence for the role of weather in 
SARS-CoV-2 transmission1 and others caution against 
interpreting weather as a key driver due to this uncertainty.22

The explanation for these inconclusive results is unclear. 
Estimates that are based on datasets focused only on 
China or the USA could lack generalisability.11,13,14,18,19,23,24 
Others have studied only a subset of meteorological 
measures, complicating comparisons. 6,14,18,19,23 Most studies 
have not controlled for other important factors, such as 
varying government and public responses, population 
density, and cultural practices.6,11,12,19,24 The delay between 
infection and official recording of cases is a particularly 
understudied factor. Failure to correct for these delays, 
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estimated to be approximately 10 days,25,26 confounds 
attempts to associate daily weather conditions with 
recorded new cases and could partly explain the 
inconsistent and inconclusive findings to date. A 
comprehensive evaluation of factors that might affect 
SARS-CoV-2 transmission, stratified by location and 
measured over time, is essential to predict and protect 
against disease spread.27,28

Here, we focus on the early stages of the pandemic, 
and assemble a dataset of the global spread of the 
COVID-19 pandemic up until late April, 2020, spanning 
3739 locations globally. We aimed to validate and 
apply a statistical method to estimate the daily 
reproduction number in each location. Controlling for 
location-specific differences (eg, in population density, 
cultural practices, socioeconomic differences, public 
transportation, and age distribution) as well as time-
variant responses in each location (eg, physical 
distancing, quarantine, lockdowns, and public space 
closures), we estimated the association of weather and 
air pollutants with the reproductive number of 
SARS-CoV-2 and provide year-round, global projections 
for May, 2020 to April, 2021.

Methods
Study design
Our dataset includes infection data for 3739 distinct 
locations, spanning Dec 12, 2019, to April 22, 2020. We 
augment the data reported by the Johns Hopkins Center 
for Systems Science29 with data reported by the Chinese 
Center for Disease Control and Prevention, Provincial 
Health Commissions in China, and Iran’s state-level 
reports. We assembled disaggregate data for the spread 
of SARS-CoV-2 in Australia (eight states), Canada (ten 

provinces), China (34 province-level administrative units 
and 301 individual cities), Iran (31 provinces), and the 
USA (3144 counties and five territories). For remaining 
countries or territories with reported COVID-19 cases 
(206 locations, see appendix p 2), country-level aggregates 
were used. We did not exclude any location without 
reported cases.

We compiled weather data from archival databases 
(World Weather Online and OpenWeather), and air 
pollution data from the European Centre for Medium-
Range Weather Forecasts. Because reliable COVID-19 
case data at the city level was scarce worldwide, for 
country-level locations that included cities with 
populations of 500 000 or greater, weather and pollution 
data were first gathered for each city and then its mean 
weighted by each city’s population into country-level 
measures. The weighted variables thus better represent 
the weather and pollution condition of heavily populated 
cities in which the reported cases are predominantly 
concentrated. For Australian states, Canadian provinces, 
US counties, and any remaining countries, we used the 
weather and air pollution data for the coordinate of 
the centroid of that location (appendix p 9 shows 
robustness to uncertainty of case report data due to 
different sizes of the locations). We obtained daily data 
for minimum, maximum, and mean temperature, 
humidity, precipitation, snowfall, moon illumination, 
sunlight hours, ultraviolet index, cloud cover, wind 
speed and direction, pressure data, as well as air 
pollutants including PM2·5, nitrogen dioxide (NO2), 
ozone (O3), and sulphur dioxide (SO2). We used 
population density data from Demographia, the US 
Census Bureau, the Iran Statistical Centre , the UN’s 
Projections, City Population), and official published 

Research in context

Evidence before this study
Understanding and projecting the spread of SARS-CoV-2 requires 
reliable estimates of the effect of environmental factors on the 
transmission of the virus. Weather and ambient air pollution can 
affect transmission in multiple ways, including viral survival, host 
susceptibility, and behavioural change. Summarising evidence 
from the first few months of the COVID-19 pandemic, members 
of the National Academies of Sciences, Engineering, and 
Medicine’s Standing Committee on Emerging Infectious Diseases 
and 21st Century Health Threats highlighted inconsistent results 
with regard to the association between SARS-CoV-2’s survival and 
transmissibility and weather-related factors. Several limitations of 
previous studies might have led to this absence of consensus: 
only including data from a subset of geographical locations; 
considering only a subset of variables (eg, temperature and 
humidity); not controlling for important factors, such as 
government and public responses, population density, and 
cultural practices; and not correctly accounting for delays 
between actual infection and official recording of cases.

Added value of this study
Addressing the current research gaps, we estimated the 
association of weather and SARS-CoV-2 transmission by 
assembling and analysing a large dataset integrating early 
COVID-19 infections, weather, and air pollution, and used the 
results to project relative transmission risk globally. Our research 
provides important evidence-based findings to assist global 
policy and decision making as states and countries balance 
vaccination, physical distancing, and other responses to contain 
the pandemic.

Implications of all the available evidence
Our findings provide evidence for relationships between several 
weather variables, ambient air pollution, and the spread of 
COVID-19. The magnitude of these associations is modest; hence, 
weather alone is not likely to contain SARS-CoV-2 transmission 
but acts as a potent force multiplier in conjunction with various 
policies and interventions.

See Online for appendix

For World Weather Online 
see https://www.

worldweatheronline.com/
developer/

For OpenWeather see https://
openweathermap.org/

For the European Centre for 
Medium-Range Weather 

Forecasts see https://apps.
ecmwf.int/datasets/data/cams-

nrealtime/levtype=sf

For Chinese Center for Disease 
Control and Prevention see 
https://www.chinacdc.cn/en

For Demographia report see 
http://www.demographia.com/

db-worldua.pdf

For US Census Bureau see 
https://www.census.gov/data/

tables/time-series/dec/density-
data-text.html

For Iran Statistical Centre see 
https://www.amar.org.ir/english

For the United Nation’s 
Projections see https://www.
un.org/development/desa/pd

For City Population see 
https://citypopulation.de/
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For UN city and country 
density see https://unstats.un.
org/unsd/demographic-social/
products/dyb/

estimates for countries not covered by these sources 
(UN city and country density).

Estimation of the reproduction number
An essential parameter in understanding the spread of 
an epidemic is the effective reproduction number, Re, the 
expected number of secondary cases generated by an 
index patient. An epidemic grows when Re is greater 
than 1 and will die out once Re stays below 1. Reproduction 
number can be approximated by (R̂) based on the 
number of new infections (Im) per currently infected 
individual, multiplied by the duration of illness (τ). 
Actual new infections on any day (IN) are not directly 
observable but if an unbiased estimator, IN̂, is available, 
one can estimate R̂ using equation 1. To develop an 
unbiased estimator, IN̂, we note that data for measured 
daily infections (Im) lag actual new infections by both the 
incubation period and the delay between the onset of 
symptoms and testing and recording of a case. We used 
published measures to quantify the distribution of both 
the incubation period (mean of between 5–6 days) and 
onset-to-detection delays (mean of between 4–6 days).25,26 
Together these shape the overall detection delay. Given 
the variance in detection delay, a simple shift of measured 
infection by the mean delay (about 10 days) offers an 
unreliable estimate of true infections (appendix pp 5, 24). 
We therefore developed an algorithm to find the most 
likely actual daily new infections IN̂ based on the observed 
measured infections (Im) and the detection delay 
distribution (appendix p 5). We then used IN̂ to estimate 
the reproduction number:

We use the daily R̂(t) as our dependent variable. The 
estimate of R̂(t) is robust to the existence of 
asymptomatic cases and under-reporting:30 if actual cases 
are f times larger than those detected, the f factor shows 
up in both the numerator and denominator of equation 1 
and cancels out (appendix pp 5, 26). We used a delay of 
τ=20 days from exposure to resolution; results are robust 
to other durations of illness (appendix p 8). For each 
location, we only included days with IN̂ values greater 
than 1. Reliability of early IN̂ values for each location is 
affected by irregularities in early testing. Moreover, an 
unbiased estimate for R̂(t) requires τ days of previous 
new infection estimates. Thus, to ensure robustness we 
exclude the first 20 days after IN̂ reaches 1 in each location 
(appendix p 9). This results in 19 221 observations of R̂(t) 
across the globe, which are included in our main model 
specification.

Controls for estimating R̂
The reproduction number for SARS-CoV-2 primarily 
varies due to location-specific factors, from population 

density, cultural practices, and public transportation use 
to age and comorbidity distribution, and genetic profile, 
among others. We controlled for these and other 
unobserved factors using location fixed effects (a 
parameter for each location estimating the effect of all 
those location-specific factors). Moreover, school closures, 
a ban on public gatherings, physical distancing, and 
other behavioural responses reduce Re over time. The 
reproduction number might also increase if adherence 
to non-pharmaceutical interventions wanes (eg, when 
contact tracing is overwhelmed, or due to reduction of 
public risk perception31,32). We account for such changes by 
estimating a location-specific time trend in Re and assess 
sensitivity to non-linear trend controls in appendix p 9, 
and as we focus on the early history of the pandemic, 
more complex non-linear trajectories of time effect are not 
required. We also separately controlled for day of the week 
to account for the possible variations in human 
behavioural patterns in each day of the week.

Independent predictors
Previous studies6,13 suggest Re might depend on various 
meteorological and air pollution factors through at least 
three pathways. First, the survival of the virus on surfaces 
and the spread of droplets and particles containing the virus 
might be affected by temperature, ultraviolet, humidity, 
wind, and particulate matter.8,10 Second, human host 
susceptibility might be affected because of factors 
modulating immune responses (eg, effect of ultraviolet 
exposure on serum vitamin D16) and respiratory tract 
susceptibility to virus (eg, temperature, humidity, and air 
pollutants6,9). Finally, the behaviour of human hosts 
(eg, interacting indoors and outdoors) is likely to be affected 
by multiple factors, ranging from temperature and 
precipitation to air pollutants, ultraviolet exposure, and 
humidity.33 Our data do not allow us to establish these 
distinct pathways explicitly. Instead, we included the 
following potential contributing factors, focusing on their 
direct effects in the main specification and discussing 
interactions on appendix p 15: temperature (mean and 
diurnal temperature, difference between maximum and 
minimum daily temperature), relative humidity, pressure, 
precipitation, mean wind speed, and ultraviolet exposure 
(UV index). We included O3 and SO2, as air pollutants (PM2·5 

reported on appendix p 16). Beyond the main specification, 
we also explored a few interactions among these variables 
and the inclusion of other environmental variables, 
including absolute humidity, number of sun h received, 
snowfall, moon illumination, NO2, and PM2.5, and report 
those results on appendix p 16.

Statistical specification and validation
Given the large variations in R̂ estimated in this method, 
we used a log transformation of R̂(t) and linear models 
to predict ln(R̂). We designed and validated our statistical 
model for estimating ln(R̂) by testing its ability to identify 
true parameters in synthetic data. Specifically, we built a 

R(t)=
∑ s=t–1

s=t–τ–1

ˆ

IN (s)ˆ

IN (t)τˆ
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stochastic simulation model of the COVID-19 epidemic, 
generated synthetic infection data using historical 
weather inputs and presumed impact functions, and 
designed a statistical model that reliably found those 
presumed effects under an ensemble of simulated 
epidemics with different basic reproduction numbers, 
weather effects, population sizes, and test coverage, 
among others. We found that: (1) given actual infections 
(IN), our method identifies the presumed functional 
form relating weather to transmission rate; (2) estimates 
become conservative (between null and true effects) 
when true infections are inferred rather than known; and 
(3) our method for inferring infections offers substantially 
better results than a simple shifting of official counts 
(appendix pp 5, 24).

Separately, to independently validate the resulting 
statistical method, NG and MG created a realistic 
individual-based model of disease transmission and used 
that to generate a separate test dataset with synthetic 
epidemics. Three scenarios were created using 
actual temperatures from a sample of 100 regions and 
three different functions for the temperature effect. RX, 
who was masked to the true functions in this 
synthetic dataset, successfully estimated the correct 
qualitative shape of those functions using our method 
(appendix p 28).

Building upon these findings, we predicted the 
logarithm of estimated reproduction number for location 
i on day t (ln[R̂it]). Our main specification excluded days 
with IN̂ less than 1 and the first 20 days after IN̂ exceeds 1 
for the first time. The model included location-specific 
fixed effects and trends and the following effects: a linear 
spline for the effect of mean temperature on transmission 
( –
T), with the knot at 25°C (see appendix p 12 for 

alternative knot values), diurnal temperature (∆T), air 
pressure (P), relative humidity (H), linear and quadratic 
effects of ultraviolet index (UV), log precipitation (C), log 
wind speed (W), log O3, and log SO2:

We projected the effect of weather and air pollution on 
the relative risk of transmission for all locations in our 
sample and 1072 major urban areas (population >500 000) 
constituting about 30% of the world’s population. 
A summary of results is provided in this Article and 
an interactive online platform offers comprehensive 
projections.

Role of the funding source
There was no funding source for this study.

Results
Our dataset included data collected between Dec 12, 2019, 
and April 22, 2020. Our main results for the association of 
weather on SARS-CoV-2 transmission are shown in the 
table. The model explains roughly three-quarters of the 
variance in ln(R̂) values (coefficient of determination 
R²=0·740), much of which is due to fixed effects (39·2% of 
variance) and trends (34·6% of variance). Mean initial R̂ 
was 1·98 (IQR 0·88 to 2·49) 20 days after the first estimated 
case with much variation across locations (figure 1A). 
Initial R̂ was negatively correlated with epidemic start time 
and positively with population density. Most locations 
showed rapid reductions in reproduction number over 
time that capture the effect of policies and behavioural 
changes that reduce contacts. Typically, R̂ falls 5·8% 
(IQR –1·7 to 8·7) per day but with notable variability across 
locations (figure 1A) partly explained by locations with 
higher initial R̂ having faster subsequent reductions. For 
example, after excluding the first 20 days of estimated 
infections, New York City (NY, USA) showed an initial R̂ 
of 5·07, followed by a 7·8% daily reduction (figure 1B).

Even after controlling for these factors, mean 
temperature, ultraviolet index, diurnal temperature, air 
pressure, wind speed, precipitation, O3, and SO2 were 
significantly associated with transmission (table). We 
found a robust effect of mean daily temperature, which 
for simplicity we characterised within two regimes, less 
than and more than 25°C (figure 2A). Temperatures 
higher than 25°C were associated with lower transmission 
rates (by 3·7% [95% CI 1·9–5·4] per additional degree), 
whereas those less than that threshold had a smaller effect 
(0·4% [0·14–0·66] reduction per degree).

Ultraviolet exposure had a robust U-shaped effect on 
the reproduction number, with a minimum ultraviolet 
index of around 6·3 (1 ultraviolet index equals 25 mW/m²; 

Mean (SD) Coefficient (95% CI) p value Standardised 
coefficient*

Wind speed, log of 
km per h†

2·552 (0·444) 0·0323 (0·0079 to 0·0567) 0·010 0·0144

Precipitation, log of mm 0·785 (1·022) 0·0265 (0·0168 to 0·0361) <0·0001 0·0271

Air pressure, millibars 1015·471 (6·077) 0·0022 (0·0005 to 0·0039) 0·013 0·0132

Humidity, % 66·946 (15·075) –0·0006 (–0·0015 to 0·0003) 0·18 –0·0091

Mean temperature <25°C 11·351 (7·089) –0·0040 (–0·0066 to –0·0014) 0·0025 –0·031

Mean temperature >25°C 27·761 (2·204) –0·0377 (–0·0559 to –0·0194) <0·0001 –0·0391

Ultraviolet index, 
25 mW/m2 

7·129 (2·824) 0·0089 (–0·0083 to 0·0260) 0·31 0·0250

Square of ultraviolet index ·· 0·0053 (0·0025 to 0·0081) <0·0002 0·0702

Diurnal temperature, °C 8·757 (3·315) 0·0042 (0·0012 to 0·0072) 0·0063 0·0139

Ozone, log of ppbv 3·289 (0·667) 0·0349 (0·0161 to 0·0537) <0·0003 0·0232

Sulphur dioxide, log of ppbv 1·139 (0·936) 0·0301 (0·0118 to 0·0485) 0·0013 0·0282

N=19 221. Fixed effects (mean 0·377 (SD 0·767]); mean of SE across locations 0·519, and trends (mean –0·060 
[SD 0·157]); mean of SE across locations 0·107. R2 (coefficient of determination)=0·740. ppbv=parts per billion by 
volume. *Standardised coefficients were obtained by first standardising all of the weather variables (mean 0 [SD 1]) 
and then re-running the analysis with our main model specification. †The outcome (reproduction number) is a 
log-transformed variable; hence the interpretation for the coefficient (β) of a log-transformed variable (X) can 
be that a 1% change in X is associated with β percentage change in estimated reproduction number. 

Table: Association of weather and air pollution and SARS-CoV-2 transmission

In(Rit) = αi + θi t + β1 min[Tit, 25] + β2 (max[Tit, 25] – 25)
 + β 3∆Tit + β4 (Pit–1000) + β 5Hit + β6 (UVit – 7·13)
 + β 7 (UVit – 7·13)² + β 8 ln(Cit + 1) + β 9 ln(Wit + 1)
 + β10 ln(O3it + 1) + β11 ln(SO2it + 1) + εit

ˆ – –

For online platform see https://
projects.iq.harvard.edu/covid19
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(figure 2B). At a low or moderate ultraviolet index of 3·0, 
a unit higher ultraviolet index decreased R̂ by 3·5% (95% 
CI 0·4–6·4). At a high ultraviolet index of 10·0, a unit 
higher ultraviolet index increased R̂ by 4% (1·8–6·3). 
Although less robust across specifications (appendix p 9), 
we also found weak to moderate and significant positive 
effects of diurnal temperature, air pressure, wind speed, 
precipitation, O3, and SO2. A 1 SD increase in each 
increases R̂ by 1·4% (95% CI 0·4–2·4) for diurnal 
temperature, 1·3% (0·3–2·4) for air pressure, 1·4% 
(0·4–2·5) for log-transformed wind speed, 2·7% 
(1·7–3·8) for log-transformed precipitation, 2·4% 
(1·1–3·6) for log-transformed O3, and 2·9% (1·1–4·6) for 
log-transformed SO2. Including these covariates does not 
change the effect of temperature and ultraviolet 
(appendix p 15).

We also found that a few interactions among these 
predictors might be relevant in establishing trans
mission rates (appendix p 15). Overall, the association 
of various weather and air pollution variables with 
SARS-CoV-2 transmission is large enough to be relevant 
to assessing transmission risk across locations and 
seasons. Variations in the reproduction number 
associated with the combined set of predictors in our 
estimation dataset showed a ratio of 1·24 between 
the 95th and fifth percentiles despite the sample largely 
coming from late winter or early spring and the 
conservative nature of these estimates. Given that the 
typical reproduction number estimated for SARS-CoV-2 
is in the range of 2–3,34,35 estimated weather effects alone 
might not provide a path to containing the epidemic in 
most locations but could notably affect the relative 
transmission rates.

Validation of our statistical method using synthetic 
data (appendix p 20) showed that: (1) our results are 
robust to under-reporting and changes in test coverage; 
(2) our method can identify the correct sign and shape 
for the effect of environmental variables; and (3) those 
estimates are potentially conservative (ie, smaller than 
the true effects). The conservatism is due to two factors. 
First, unavoidable errors in estimating daily infections 
from lagged official data lead to imperfect matching 
of independent variables and true infection rates, 
weakening any estimated relationship. Second, fixed 
effects and trends further weaken the signal used for 
estimation. If a region has a lower or higher baseline 
reproduction number, or a faster change, due to weather 
factors, those effects are absorbed in the fixed or trend 
effects; only changes not accounted for by the trend are 
attributed to weather effects.

We also did eight empirical tests to assess the robustness 
of our findings (appendix p 6). First, our results did not 
change with the use of different illness durations to 
calculate R̂. Second, our main findings are robust to 
excluding extreme values of the dependent variables, the 
last few days of data, only using the US sample, and the 
inclusion of location-specific quadratic trend or time 

fixed effects. Third, our results are largely insensitive 
to different exclusion criteria for initial periods of 
transmission per location. Fourth, when independent 
variables in each location are permuted and shifted in a 
placebo test, no effects remain, showing that results are 

Figure 1: Estimated reproduction number over time
(A) Scatter diagram of initial reproduction number and daily percentage change across different locations, 
colour coded for date of local epidemic start. Size of the circle is proportional to population density in a location. 
(B) Estimated daily reproduction number R̂  values for New York City (20 days in grey area excluded). Re=effective 
reproduction number.
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not an artifact of the statistical method. Fifth, using 
different knots for the spline effect of temperature shows 
25°C best separates the effect into two distinct slopes. 
Sixth, the estimated U-shaped effect of ultraviolet does not 
change when observations with high ultraviolet index are 
excluded. Seventh, we explored more interaction terms, 
and additional weather variables (eg, absolute humidity, 
NO2, and PM2·5), none of which are significant predictors 
or change the main results. Finally, overall projections of 
how weather and air pollution affect transmission rates 
using various specifications and on independent samples 
are consistent with our main specification.

Our results are associative and extrapolating out of 
sample includes unknown risks. With that caveat in mind, 
one can calculate the contribution of weather and air 
pollution to expected transmission for any vector of 
weather and air pollution based on results in the table. We 
defined relative COVID-19 risk associated with weather 
and air pollution (CRW) as the relative predicted risk of 
each weather and air pollution vector relative to the 
95th percentile of predicted risk in our estimation 
sample (1·476). The choice of this reference point is 
somewhat arbitrary but makes a value of 1 a rather 
high-risk level. A CRW of 0·5 reflects a 50% reduction in 
the estimated reproduction number compared with this 
(high-risk) reference. Formally:

These scores do not reveal the actual value of Re as that 
value is contingent on location-specific factors and 

policies for which we have no data outside the estimation 
sample. Rather, CRW scores inform relative risks due to 
weather and air pollution (ie, assuming all else is equal) 
across locations, or within a location over time.

Figure 3 provides a visual summary of global CRW 
scores, with the mean calculated over the first half of 
July, 2020. The colour-coded scores suggest much 
variation in the expected risk of SARS-CoV-2 transmission 
across locations, with increased risks due to both low 
temperature (some regions in the southern hemisphere) 
and very high ultraviolet indexes (some locations in 
Central America). Additional snapshots of global CRW 
scores at different times of the year are shown in the 
appendix (p 31), and the website for weather, air pollution, 
and COVID-19 transmission offers week-by-week risk 
measures year-round.

Figure 4 shows CRW projections for five major cities in 
each of four regions. These projections used weather and 
air pollution from 2019, with means calculated over a 
15-day moving window, for 2020–21 dates; as such, they 
do not reflect actual weather on a given date, only a 
historically informed projection. Live projections could 
be achieved using current weather data. Many large cities 
go through periods of higher and lower risk during the 
year. We cannot associate these risks with absolute 
reproduction numbers, and our estimates are likely to be 
conservative. Nevertheless, assuming typical basic 
reproduction rates (eg, 2–3), weather factors will not 
bring the reproduction number to less than 1. For 
example, in New York City, with estimated R̂New York (0) of 
around 5, the effect of weather could lead to a 30% 
variation in the reproduction number (ie, the 4–6 range), 
requiring substantial interventions (ie, vaccination and 
physical distancing) to enable containment regardless of 
weather. The website for weather, air pollution, and 
COVID-19 transmission provides these projections for 
the 1072 largest global cities.

Figure 2: Association of mean temperature and ultraviolet index and SARS-CoV-2 transmission
(A) Relationship between temperature and reproduction number (β1 and β2) with its uncertainty. (B) Relationship between ultraviolet index and reproduction 
number. A and B include (80% downsampled for temperature less than 30°C and ultraviolet index less than 14 (25 mW/m²) original data points and the relationships 
of interest were estimated after controlling for other factors as in equation 2.  R̂=estimated reproduction number.
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Discussion
This work combines an extensive dataset of early 
SARS-CoV-2 transmission with weather and air pollution 
data across the world to estimate the association of 
various environmental variables with the spread of 
SARS-CoV-2.

We found a strong association between temperatures 
higher than 25°C and reduced transmission rates, and a 
weaker effect for temperature less than 25°C. These 
findings suggest that many temperate zones with high 
population density could face larger risks in winter, 
whereas some warmer areas of the world might have 
slower transmission rates in general. The U-shaped 
relationship between ultraviolet index and transmission 
could reduce transmission in more temperate regions 
during summer, but lead to higher risks in equatorial 
regions with very high ultraviolet exposure.

Most of the associations we found are consistent with 
theoretical mechanisms thought to link environmental 
factors to transmission: the negative temperature effect 
on transmission, boosted at higher temperatures, is 
consistent with virus survival rates in experimental 
work;8 the positive effects of wind and precipitation 
could result from people spending more time indoors 
in which transmission is more probable than outdoors; 
and the effect of air pollutants might be related to 
increased susceptibility in more polluted environments.9 

Air pollution is well know to cause a range of health 
outcomes, such as chronic obstructive pulmonary 
disease, cardiovascular diseases, and respiratory 
diseases, among others. All individuals with such 
conditions are susceptible to COVID-19 and are at-risk 
groups. Nevertheless, we remain mindful that our 
study design and data cannot establish such 
mechanisms empirically. For example, we hypothesised 
that ultraviolet exposure would reduce transmission 
(due to both stimulating vitamin D production and 
ultraviolet’s disinfecting effects). Our estimates have 
the expected sign in the low ranges of ultraviolet, but 
also reveal an unexpected increase in the high ranges of 
ultraviolet. The unexpected increase in the high ranges 
of ultraviolet could be due to a shift of social interactions 
into higher risk, indoor, settings when ultraviolet 
amounts are very high; but we cannot test such 
explanations here.

Methodologically, we showed that accounting for the 
distribution of the delay between infection and detection 
is important. Many previous studies did not fully account 
for this delay, or its distribution, which might partly 
explain inconsistent previous results. We also showed 
that our methods and results are robust to significant 
under-counting of cases in official data, and to changes 
in test coverage over time, both major concerns in using 
official case data (appendix pp 5, 22).

Figure 3: Relative COVID-19 risk associated with weather and air pollution globally, with means calculated over the first half of July, 2020

July 1–15, 2020

0·5 1·5

Relative COVID-19 risk associated
with weather and air pollution
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Nevertheless, we acknowledge the inherent challenges 
in estimating Re from the case report data, which can lead 
to conservative overall estimates as evidenced by our 
simulation studies. This fact should also be noted in 
using our projections. Other limitations include the 
scarcity of reliable transmission data in some regions of 
the world, the focus on early stages of the pandemic, the 
oversampling from US locations, the limited data with 
high temperature and ultraviolet in our estimation 
sample, which reduce confidence for projections when 
either is very high, use of 2020’s weather data to 
project 2021’s outcomes, and use of correlational evidence 
to inform out-of-sample projections. These items 
point to future avenues of research to expand this study, 
include more recent data, and address the study 
limitations.

Despite these limitations, consistent results using 
various conservative specifications and placebo and 
validation tests provide promising indications of the true 
effect of weather conditions on transmission. Moreover, 
independent validation of results based on research 
using our projections provides strong support for 
the usefulness of these projections.

The equations and CRW projections in this Article were 
first shared in a preprint in May, 2020,36 and have since 
been used by several researchers. At least two of those 
studies provided unique opportunities to independently 
assess our projections. In one,37 the researchers 
included a multiplicative term, CRWi

γ, in formulating 
reproduction number for country i, and estimated the 
γ parameter based on actual infection, death, and testing 
data across 92 countries over the course of 2020. If γ was 
estimated to be 0, CRW had no predictive value, a value of 
1 means current estimates are precise, and values greater 
than 1 point to highly informative but conservative CRW 
projections. The study included endogenous changes in 
behaviours and policies in response to risk and accounted 
for under-counting, treatment effects, and the age 
distribution of the population. With these controls in 
place, the authors found an estimate of γ=2·64. These 
results provide strong support for the usefulness of CRW 
factors long after the estimates were created based only 
on year-long means (rather than actual values) for weather 
inputs. A similar study using CRW values in the context 
of country-level data in the USA provided the estimate of 
γ=3·88.38 Overall, independent research provided strong 

Figure 4: CRW measures over the year for major cities around the world
CRW projections for five major cities in each of the four regions of North and South America (A), Europe (B), Africa and Oceania (C), and Asia (D). CRW=relative 
COVID-19 risk associated with weather and air pollution.
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support for the CRW factors, but also points to these 
projections being conservative. Consistent with our 
theoretical arguments and synthetic data analysis 
reported in the appendix (p 19), our study could offer a 
lower bound for the true effect of weather on SARS-CoV-2 
transmission.

The estimated effects suggest year-long changes in 
transmission rates due to weather might partly explain 
some waves of the pandemic across different nations and 
substantially moderate the risk profile over the coming 
year. Nevertheless, as shown in 2020, the estimated effect 
of weather on transmission risk is not large enough 
in most places to quell the epidemic alone. In fact, 
much of the variation in reproduction number in our 
sample is explained by location-specific fixed effects and 
trends (which include adherence to public health 
recommendations such as physical distancing and 
workplace closure), not weather. Ultimately, weather and 
air pollution are more likely to play a secondary role in the 
control of the pandemic. Policy makers and the public 
should remain vigilant in their responses to the pandemic, 
adhere to non-pharmaceutical interventions, continue to 
ramp up vaccination, and capitalise on the synergy 
between weather-induced reductions in transmission in 
summer, and vaccination to control the pandemic to avoid 
new large waves in autumn.
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